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Abstract

Industry dimension is increasingly dominant to investigate the upward trend of in-
equality. This paper examines the key drivers of U.S. wage inequality through a
general equilibrium model, emphasising the role of heterogeneous capital-labour
substitution elasticities across industries in shaping wage dispersion. Key is the dis-
tinction of a quantity effect (changes in the composition of capital and labour in-
puts) and a structural effect (reflecting technological transformations in inputs sub-
stitutability) from Skill-Biased Technological Change (SBTC). Findings suggest that
industry-level transformations on the labour side — differentials in job tasks substi-
tutability and workforce composition — constitute the principal drivers of real wage
inequality, overshadowing the contribution of capital-side adjustments. A structural
estimation of the model reveals that trend-asymmetries in the elasticities of substi-
tution between ICT capital, routine and non-routine workers account for 94% of
observed wage variance, while stronger sorting and segregation effects further exac-
erbate such dispersion. Upon neutralising structural differences between industries,
SBTC reckons merely 6-15% of the observed wage inequality.
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INTRODUCTION

Wage inequality has been on the rise in United States over the last decades: since
the late 1970s, top 1% (0.1%) real wages grew by 181.7% (353.9%), whereas a com-
paratively modest increase of merely 43.7% marked the bottom 90%; in addition,
between 1980 and 2022, the 90/10 real wage percentile ratio rose from 4.2 to 5.7.1

Understanding the cause behind such turn is a secular challenge in economics,
and a large body of research has identified key drivers behind rising wage inequality.
One prominent explanation focuses on employment polarization, largely attributed
to new technologies and increasing returns to skills.? Under new consensus, polar-
ization is rationalized by job tasks (e.g., Autor, Katz, et al. 2006), and not by residual
or skill-driven wage differentials.> Another explanation concern the centrality of
the industry dimension: Haltiwanger et al. (2024) demonstrate that industry-specific
factors, alongside worker and firm characteristics, account for more than 60% of the
rise in United States’ wage dispersion over the past three decades. Thus, a thorough
understanding of wage inequality must account not only for the workforce character-
istics but also for the structure and evolution of the industrial composition.

Addressing the issue I build a general equilibrium model of industries, whose
differences are reflected in either their relative endowments of capital and labour
and in their elasticities of substitution among factors of production, to explore the
contributing drivers of real between-industry wage inequality.* Inequality in wages
can thus be influenced along two dimensions. If substitution elasticities are uniform
across industries, inequality arises primarily from differences in capital and labour
accumulation, in consistency with the SBTC framework.? If industries differ in
their substitution elasticities, even similar production inputs growth lead to diverg-
ing wage outcomes: inequality is driven less by the quantity of inputs and more by
the structure of technology and its interaction with factors accumulation.

1 Visit the reports by Epi (2024) and Fed (2024) to inspect these magnitudes, respectively.

2 Shifts in the labour force composition in the matter of education and experience underwent a job polariza-
tion in the labour market, wherein rapid growth in both high and low education jobs has led to a reduction in
the “middle skill” employment share (Acemoglu and Autor 2011). Although the supply of skilled workers has
risen markedly, the skill-premium in wages has continued to grow. Central was the technology-based polariza-
tion hypothesis (Michaels et al. 2014, Burstein et al. 2019) and the theory of Skill Biased Technological Change
(SBTC), where “a burst of new technology caused a rise in the demand for highly skilled workers, which in
turn led to a rise in wage inequality” (Card and DiNardo 2002). Globalization (e.g., Epifani and Gancia 2008)
and new technologies fostered job polarization by directing workers toward the ends of the wage distribution,
thereby contributing to inequality — since high- (low-) skill jobs tend to be high- (low-) paid.

3 Providing a sectoral perspective, Cerina, Moro, et al. (2021) assert that the downward polarization of
employment is characterized by the prevalence of routine tasks but it is fundamentally shaped by the type of
sector (services and non-services sectors) rather than the performed job task.

4 Elasticities of substitution between capital and labour are crucial for understanding factor income shares:
when elasticities exceed one (“gross substitutes”), capital accumulation tends to reduce labour’s marginal prod-
uct; whenever it is non-unitary and below one (“gross complements”), the opposite holds.

5 SBTC posits that changes in technological endowments disproportionately benefits high-skilled workers
while displacing lower-gkilled ones, contributing to wage inequality. Refer, for example, to Tinbergen (1974),
Katz and Murphy (1992), Card and DiNardo (2002), and Acemoglu and Autor (2011).



Given these overlapping explanations, the analysis aims to quantify the relative
importance of each factor contributing to wage inequality. While the “quantity” chan-
nel has been examined at length, largely unexplored remains the “structural” realm,
whose effects are driven by structural transformations — hereafter interpreted as
sectoral heterogeneous trends in the capital-labour substitution elasticities as in
Alvarez-Cuadrado et al. (2018). This paper offers a first attempt to isolate and assess
their contribution. The analysis unfolds in five main parts. I begin by delivering a
set of novel stylized facts on the relationship between Information and Communi-
cation Technology (ICT), labour force composition, and dispersion in real wages at
3-digit U.S. 2017 NAICS industry level from 2003 to 2022.° Second, I provide a for-
malization of these findings introducing a structural model wherein wage inequality
is a consequence of an interplay between evolving production technology, workforce
composition, and labour market concentration. Third, I bring the specified model to
the data via an internal estimation of its parameters; once duly calibrated, I then
conduct counterfactual exercises to quantify the role of changes in structural param-
eters in shaping observed variance in U.S. real wages. Finally, I discuss how shifts
in capital and labour endowments, and in estimated sectoral productivities, cannot
account for observed inequality once structural industry differences are removed.

To elucidate how differences in the industrial composition of capital and labour
types affect wage dispersion, I build a general equilibrium model of industries dif-
fering in degrees of substitution among inputs of production. The market structure
equips the economy with a block of industries populated by monopolistically compet-
itive firms employing two types of both capital and labour: besides physical capital,
non-routine workers are complementary to ICT capital while routine workers are
substitutes, in the spirit of Krusell et al. (2000). As for heterogeneity, an important
phenomena of the labour market is that workers are themselves of varying capac-
ities depending on where they are employed in; accordingly, the structure of the
labour market is designed around the endogenous sorting of each household into the
firm-industry pair where it is most productive. This mechanism results in upward-
sloping, firm-specific labour supply curves, linking industry wage premia to sorting
and segregation effects in a competitive labour market.”

Quantitatively, I estimate the model on U.S. industry-level data. The key struc-
tural parameters include two substitution elasticities (between ICT capital and non-
routine labour, and between routine and non-routine tasks) as well as the degree
of labour market concentration (strength of sorting and segregation effects, with
higher concentration indicating stronger worker sorting across industries). Despite
its convoluted structure, the model’s general equilibrium structure enables a clear

6 T document the importance of structural transformations in the U.S. economy on its wage inequality: in-
dustries exhibiting the largest growth in real wages are those significantly adopting ICT capital over physical
capital, and where the substitution of routine with non-routine workers is most pronounced.

7 This framework aligns with insights from the class of “new monopsony models” (e.g., Manning 2021).
Appendix D shows that incorporating wage-setting power does not materially affect the model’s predictions on
industry wage inequality, consistent with the empirical findings of Card, Rothstein, et al. (2024a).



identification of production technology parameters. Following Karabarbounis and
Neiman (2014), elasticities are estimated using industry-level labour share data: I
adapt their approach by imposing a negative relationship between trends in labour
shares and relative ICT capital intensity. Estimates suggest “gross complementar-
ity”, with capital-labour elasticities of substitution ranging from 0.25 to 0.8.

Given the estimated set of parameters, the model successfully captures key fea-
tures of the inter-industry wage structure and prevailing wage inequality levels. In
the baseline cross-sectional calibration, substantial heterogeneity emerges in the es-
timated substitution elasticities: industries with the largest wage growth show the
strongest impact of technological change, followed by those with minimal and mod-
erate wage variation. A re-estimation over two distinct sub-periods confirms how
these technological parameters evolved unevenly across industries both in direction
and, more critically, in magnitude.® Having provided reduced-form empirical sup-
port for the model’s theoretical implications, I use the observed shifts in structural
parameters to conduct counterfactual simulations. These exercises decompose the
industry component of U.S. wage inequality since the early 2000s, accounting for the
interaction between technological change, labour force composition, and labour mar-
ket concentration. To isolate the key mechanisms, I examine how period-variations
in individual or combined technological parameters affect key outcomes of the model
related to observed moments. I also estimate sectoral productivity via industry-level
production functions and assess its contribution — alongside capital and labour input
changes — once structural heterogeneity in technological parameters is excluded.

My main findings highlight that structural transformations are the primary de-
terminants of U.S. between-industry wage inequality, far outweighing the role of
changes in factor inputs typically emphasized by SBTC dimension. The paper allows
to pin down four main takeaways. Firstly, structural effects dominate quantity ef-
fects: when allowing for cross-industry trend-differences in substitution elasticities,
the model accounts for 94% of the observed between-industry wage dispersion. By
contrast, when holding these elasticities uniform across industries, changes in pro-
duction inputs quantities explain only 6% to 15% of the observed inequality. The
“structural effect” (heterogeneous shifts in capital-labour elasticities of substitution
across industries) accounts for the bulk of observed between-industry wage disper-
sion, while the “quantity effect” (industry-specific changes in ICT capital, labour
force, and productivity) plays a minor role.

Secondly, substitution across job tasks is the dominant channel. The “indirect
effect” of SBTC — namely, the reorganization of tasks in response to technological
change — is way more impactful than its “direct effect” — changes in non-routine
workers due to changes in technological capital. Rising inequality is therefore tightly
linked to the worker side than the capital side of production across industries.

8 Industries where wages increased the most (less) have experienced a decrease in the complementarity
between technological capital and non-routine workers of about 25% (131%), while slightly increasing the
complementarity between job tasks of 3% (11%). Differently, intermediate industries undergone a reduction
(20%) in substitutability of ICT capital-non-routine tuple, along a pale increase (3%) in job tasks substitution.



Thirdly, labour market concentration magnifies structural effects. Incorporating
heterogeneous sorting and segregation effects into the model further amplifies in-
equality, explaining up to 98% of the total between-industry wage dispersion when
interacted with the evolving technological structure, since they are reinforcing the
role of structural transformations through workforce allocation dynamics.

Fourthly, wage inequality appears unaffected by wage markdowns. Allowing firms
to exert monopsony power — setting wages below the marginal revenue product of
labour — yields patterns of between-industry real wage inequality that are broadly
similar to those under the competitive labour market benchmark. This result aligns
with the findings of Card, Rothstein, et al. (2024a), who report little correlation be-
tween industry wage premiums and wage markdowns in U.S. manufacturing.

These findings indicate that while Skill-Biased Technological Change is necessary
in explaining U.S. wage inequality, it is not sufficient on its own. What matters most
is not the scale of factor input quantities accumulation, but the sector-specific evolu-
tion of technology and production structures. As such, explaining wage inequality re-
quires moving beyond quantity-based narratives toward a clearer focus on structural
heterogeneity and the dynamic nature of technological change across industries.

Related literature.— This research contributes to several strands of the liter-
ature. A primary connection is with papers studying wage inequality in the U.S,,
traditionally emphasizing individual- and worker-level differences.” Although still
contributing significantly to wage variance, the importance of such within-firm di-
mension is declining. A burgeoning literature interprets the rise in wage inequality
since the mid-1970s to be notably driven by between-firm differences, as disparities
in firms’ average wages account for a significant share of the overall inequality.'”
Anyhow, recent evidence unveils how firm-level differentials are primarily clustered
at the industry level. While earlier studies had already shown that inter-industry
wage differentials, both for workers with similar skills and for overall wage varia-
tion, were substantial but stable throughout much of the 20th century (e.g., Slichter
1950, Cullen 1956, Krueger and Summers 1988, Allen 1995),11-12 the industry com-

9 Interpretations on the within-firm dimension of inequality have been predominant (Eeckhout 2021), and a
large body of empirics documented the role of individual characteristics on wage premium differentials. Early
comprehensive explanations are Katz and Autor (1999) and Lemieux (2010), while noteworthy is the debate
with “revisionists” who interpret rising differentials as episodic events; refer to Autor, Katz, et al. (2008).

10 Firm-level differences are strong in several countries: Brazil (Alvarez et al. 2018), Germany (Card, Hein-
ing, et al. 2013), Italy (Bingley and Cappellari 2022), Portugal (Card, Cardoso, and Kline 2016), and U.S. (Davis
and Haltiwanger 1991, Dunne et al. 2004, Leonardi 2007, Barth et al. 2016, Song et al. 2019). Groshen (1991)
studies the drivers of intra-industry variation of wages across firms.

11 Refer to Krueger and Summers (1987) and Dickens and Katz (1987) for a discussion of the findings. A com-
plementary literature explores the role of inter-industry dispersion in capital-labour ratios on wage inequality
(Montgomery 1991, Caselli 1999), while sectoral differences are important also to interpret both the racial
(Card, Rothstein, et al. 2024b) and the gender (Fields and Wolff 1995) pay gaps, and wage differentials under
a behavioural economics perspective (Thaler 1989).

12 Allen (2001) notices how the “stability” argument may be misleading since important within-industry fac-
tors changes over time, while the constancy depends on a strong autocorrelation over a long time period. Under
a cross-country comparisons, a substantial but stable inter-industry wage differential exists also among E.U.
(Genre, Kohn, et al. 2011, Genre, Momferatou, et al. 2005) and OECD (Gittleman and Wolff 1993) countries.



ponent of wage inequality has grown markedly over the past three decades.!® Cen-
tral is the work of Haltiwanger et al. (2024):'* they show that wage differentials
across industries have driven much of the rise in U.S. wage inequality from 1998
to 2018, with a small number of industries playing a disproportionate role.’® Sim-
ilar results for Italy are handled by Briskar et al. (2022). Card, Rothstein, et al.
(2024a) also document substantial inter-industry wage premiums, positively linked
to workers’ skills sorting.'® Existing theoretical models do not address industry-
driven wage dispersion; my contribution is to develop a framework that incorporates
structural differences in capital-labour substitutability across U.S. industries to ex-
plain observed trends in between-industry wage inequality.”

Second, my analysis directly dives into the task-based literature.'® The role of
tasks in shaping wage inequality was first emphasized by Autor, Katz, et al. (2006),
who highlight how technological change alters the distribution of job task demands,
thus driving job polarization. Technology and labour force composition is further
analysed in Cortes et al. (2017), further showing that technological advances have
shifted employment from routine to non-routine tasks. Building on this, I examine
how industry-driven technological change reshapes labour force composition through
tasks division and reallocation, contributing to U.S. wage inequality.

Third, results build on studies estimating the elasticity of substitution between
capital and labour. I allude to two strands of the literature addressing this issue. The

19

first focuses on the secular decline in the labour share,™ particularly its industry-

13 Rising between-industry wage inequality is a well documented fact (Davidson and Reich 1988, Bell and
Freeman 1991, Howell and Wolff 1991, Allen 2001). Haltiwanger et al. (2024)’s contribution is to show its
importance on the increase in total U.S. wage inequality relative to both individual and firm components.

14 Whose findings are reinforced by Haltiwanger et al. (2023) in a purely methodological contribution: while
household-level data mostly provide worker-based explanation for wage inequality, administrative data em-
phasize the magnitude of firms and industries. Matching these two approaches in a unique Current Popula-
tion Survey-Longitudinal Employer Household Dynamics (CPS-LEHD) dataset, authors detect how between-
industry inequality owns most of the growth in U.S. wage inequality. These conclusions lead to a bias in studies
detecting humble (or negative) role of the industry differences component (e.g., Hoffmann et al. 2020).

15 Katz and Murphy (1992) notably observed that while shifts in labour demand across sectors were modest
overall, skill-intensive sectors contribute significantly to variations in workers’ demand. Although not dom-
inant, the between-industry composition of the workforce was already evident in their sample (1963-1987),
preceding the period 1996-2018 examined by Haltiwanger et al. (2024).

16 Moreover, the spatial variation of industries across major U.S. commuting zones plays only a modest role.
Overall, this paper focuses on the determinants of the U.S. industry wage premium rather than measuring
inequality, and contributes to the literature on (un-)observable worker abilities (e.g., Krueger and Summers
1988, Gibbons and Katz 1992, Gibbons, Katz, et al. 2005).

17 Recent attempts to structurally model inequality have focused on firm-level drivers (Kleinmann 2023 and
Hong 2024 on spatial factors; Freund 2024 on worker complementarities; Boerma et al. 2025 on worker-firm
assignment). Related work includes Macera and Tsujiyama (2024) on the link between firms’ technology,
recruitment behaviour, and wage inequality across education groups, and Erosa et al. (2025) on the interpre-
tation of U.S. labour market polarization and rising wage inequality as of changes in occupational sorting.

18 Strong emphasis in measuring employment trends by job task content: rapid employment growth for
non-routine tasks from early 1990s relative to routines (e.g., Goos and Manning 2007, Goos, Manning, and
Salomons 2009, Acemoglu and Autor 2011, Autor and Dorn 2013, Jaimovich and Siu 2020, Cerina, Moro, et al.
2021, Cerina, Dienesch, et al. 2023, Jaimovich, Zhang, et al. 2024, Siena and Zago 2024, Cossu et al. 2024).

19 Myriads of explanations have been given to answer to this problem; refer to Karabarbounis (2024) for a



level drivers: Karabarbounis and Neiman (2014) show that most of the global decline
in labour share occurs within industries rather than changes in their size; Eden and
Gaggl (2018) highlight the role of information and communication technology (ICT);
and Glover and Short (2023) emphasize demographic shifts. The second strand re-
lates to structural transformations.?? Sectoral differences in capital-labour elastic-
ities of substitution, as in Herrendorf, Herrington, et al. (2015), shape factor reallo-
cation across broadly defined sectors. These two perspectives intersect in my model,
which incorporates industry-level elasticities, estimated via labour shares, to explain
wage inequality through variations in the degrees of substitutability between capital
and task-based labour force across industries.

Roadmap .— This introduction is succeeded by Section 1, which provides the moti-
vating evidence at which the model presented in Section 2 refers to. Section 3 shows
and assess the performance of the calibration strategy, while Section 4 quantifies
the relevance of given parameters in accounting for the observed level of U.S. wage
inequality. Section 5 determines the importance of capital and labour quantities and
of an estimated measure of sectoral productivity. Last section concludes.

1. MOTIVATING EVIDENCE

To account for trends in wage dispersion I use annual U.S. data, and the 3-digit U.S.
2017 North American Industrial Classification System (NAICS) is adopted for the in-
dustry level definition. The (balanced) panel data built is due to the combination of
two main different data sources: first, information on the stocks of physical and tech-
nological capital types are recovered from the Bureau of Economic Analysis (BEA),
in the Detailed Data for Fixed Assets tables; the second source is the Occupational
Employment and Wage Statistics (OEWS) program of the Bureau of Labor Statistics
(BLS), which contains information on occupational employment and wage rates.

In each industry, among all the types of capital assets present in the former source
of data, I am going to classify capital types accordingly: digital equipment comprises
all the electronic structures that are useful to process technological issues; the stock
of intangible capital coincides with that of “Total Intellectual Property Products”
(IPP); finally, physical (or non-ICT) capital is the sum of all the remaining asset
types, and the considered time window in the analysis on data from BEA only is
1998-2022. For what concerns data from BLS, information are provided for granular
occupations according to the Standard Occupational Classification (SOC) for private
3-digit U.S. 2017 NAICS industries from 2003 onwards. However, since detailed
occupations may vary across industries, I exploit the labelling of “major” occupations

comprehensive interpretation of the results, and to Bergholt et al. (2022) for a notable shocks’ decomposition.

20° A growing debate studies the phenomenon of structural transformation (reallocation of economic activity
across broadly defined sectors, namely agriculture, services and manufacturing) and its implications for eco-
nomic aggregates. Early attempts are due to Matsuyama (2009) and Ray (2010), while Herrendorf, Rogerson,
et al. (2014) provide a systematic review of the recent literature. Buera and Kaboski (2012) interprets the
rising skill-premium in connection to the structural movement of economic activity toward services industries.



and divide them in routine and non-routine tasks, to then merge these data with that
extracted from BEA. In the merging process (BEA and BLS), the 4-digit industries
in the BEA data have been clustered into 3-digit category, so that the main analysis
is conducted on a complete sample of 62 private 3-digit U.S. 2017 NAICS industries
over an annual time window spanning from 2003 to 2022. For additional details and
an extended discussion of the data refer to Appendix A.

1.1. VALIDATING THE SAMPLE

Starting the empirical exploration, I first evaluate the suitability of my constructed
sample: this section complements and reinforces existing findings on the between-
industry component of U.S. wage inequality. I identify the industries that contribute
most to increasing inequality, to then decompose their contributions into employ-
ment and wage changes within and between selected industry groups.

From Haltiwanger et al. (2024), the industry-s € S contribution to wage inequal-

ity can be decomposed as , o
industry-s contribution to
between-industry wage variance
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in which the employment share component allows to attach the proper weight
to each industry. In each year, w(s) is the average real log-wage of industry-s, w
the associated economy-wide period mean, while /(s) and ¢ represent sectoral and
aggregate employment, respectively. Furthermore, a shift-share analysis provides
insights on industry factors accounting for such variance growth, thus detecting the
relative importance of relative wage changes versus employment share changes:
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Output for these two decompositions is reported in Table 1. At 3-digit U.S. 2017
NAICS level, a small fraction of industries is the major giver: 93% of total dispersion
in wage inequality is determined by 15 out of 62 industries which account for almost
40% of total employment. Among these industries, only 3 account for more than
a half of total trend in real log-wage variance, with 8% of total employment share.

Industry-related contribution to wage variance growth can be further inspected by
exploiting the results of the shift-share analysis, which provides information about
the role of changes in wage and in employment shares. As will be further illustrated
in Fact n. 3, the size of industries in terms of employed workers is not so relevant
in determining the routine and non-routine job tasks combination; from Table 1,
an expansion of the relative labour force of industries plays a little role on wage
inequality, while it is the relative wage component that is most important: major
contribution to wage variance growth is not due to variations in the employment



TABLE 1: CONTRIBUTION TO BETWEEN-INDUSTRY WAGE VARIANCE

share shift-share
contribution industries variance employment wage employment
> 5% 3 26 54% 8% 90% 10%
1% to 5% 7 14 29% 18% 76% 24%
.05% to 1% 6 05 10% 13% 124% -24%
-.05% to .05% 46 03 7% 61%
quantiles
0-25 15 24 50% 31% 91% 9%
25-50 16 04 8% 28% 77% 23%
50-75 16 02 4% 15%
75-100 15 18 38% 26% 98% 2%

Estimates are referred to eq. (1) for 3-digit U.S. 2017 NAICS industries. The last two columns report a
quantification of the components in eq. (2); not reported estimates “’ imply that the shift-share for employment
is highly less than zero. Operator A in the equations is x; — x;_1, and not a percentage change. Industries are
grouped according to their own contribution to between-industry wage inequality in the first part of the table
while, in the second part, grouping follows the overall percentage change in real log-wage per capita of each
industry. Source: BEA and own calculations.

size, but rather to changes of the industry wage relative to the mean wage.

FACT 1 (Contribution) A small subset of industries drives the rise in wage inequality;
these are in the tails of the industry-level wage growth distribution.

Similar exercise can be performed by dividing industries in terms of changes in
real log-wage (second part of Table 1). Top and bottom 25% industries account for
88% of wage inequality, and own almost 60% of total employment. The relative wage
component is significantly more important than the employment-size one: changes
in the size of industry-level workforce account for a little effect on wage inequality,
thus reconciling with Fact n. 3. Finally, it can be concluded that major contribution
to U.S. wage inequality is due to a small fraction of industries, whose position is polar
in the distribution of total changes in industry real wages;?! these results align with
the empirical findings outlined in Haltiwanger et al. (2024).22

21 Exploiting this result, I also decompose the pattern in wage inequality by dividing industries in different
groups. In eq. (A.1), I borrow from Kleinmann (2023) a decomposition quantifying the contribution of those
groups of industries to wage inequality. This can be divided into wage variance within the group of industries,
total employment reallocation across groups, and co-movement of variance and employment shares. Table A.5
reports the estimates: industries in the tails of the wage growth distribution account for most of the within-
group dimension in wage-inequality (almost 80%). Still, there is small room for employment share changes
(even if more pronounced since measured in variance terms). An important observation to be made is that the
services sector owns a substantial portion of U.S. wage inequality, thus winking at the literature on the decline
of the U.S. manufacturing sector (e.g., Moro 2012, Buera and Kaboski 2012, Leén-Ledesma and Moro 2020).

22 According to their estimates, just 10% of 4-digit U.S. 2017 NAICS industries account for nearly 98% of
the total increase in between-industry wage dispersion from 1996 to 2018, as well located at the tails of the



What intrinsic characteristics underpin the dispersion of wages across industries?
Why does the employment size of industries seem to play a minimal role? These
questions are explored in the following subsections.

1.2. U.S. INDUSTRIES DIGITALIZATION

In addition to the aggregated capital types, I further define ICT capital to be the
combination of intangibles and digital equipment. BEA also collects data on wage
levels of industries, together with total effective workforce; to focus on real wages,
data on annual Consumer Price Index (CPI) inflation levels are extracted from FRED
database. Not exploiting BLS data throughout, the time window considered is 1998-
2022. Both capital stocks and real wages are taken in industry per capita log-terms.
As a first step I shall detect whether differences in capital stocks among indus-
tries reflect differences in wages. To account for rising dispersion, Figure 1 plots
the evolution of differentials in capital ratios and real wages. Panel 1a considers
the industry-level dispersion as determined by the inter-quartile range, namely the
distance between top and bottom 10% industries in each log-quantity: differences in
these ratios are increasing over time when considering ICT capital, meaning that
industries that have highest per worker ICT capital stock are widening the gap rel-
ative to those with the lowest one; same, but under alternate behaviour, is for paths
related to intangible assets and digital equipment. Different story can be said for the
stock of physical capital: over time, its gap among industries is declining, denoting a
reduction of the distance in the stock of physical capital owned by each industry.
Comparing inter-industry differentials of each capital type with that of labour
income, gaps in real wages are mainly related to gaps in ICT capital rather than
other types of capital. The importance of macro-complementarity underlies this ob-
servation:?® abstracting from physical capital for the reasons so far, the variance
of intangibles and digital structures is not able to path that of real wages if these
two capital types are not combined into the unique ICT capital measure, as detected
by Panel 1b. Relevant is the role played by the combination of intangible capital
and digital equipment: together, these are able to better track the stream in the real
wage variance; if taken alone, industry-level intangibles can roughly track wages
around 2012, while digital equipment plays a role only from 2012 and beyond.

FACT 2 (Industry capital gaps) Dispersion in physical capital-labour ratio is decreas-
ing across industries, while it is not that of ICT capital-labour ratio.

Further evidence on the importance of ICT capital on real wages is provided by

industry-level earnings distribution. The findings underscore that rising inequality is not a broad-based phe-
nomenon but is instead concentrated in a relatively narrow set of sectors undergoing substantial divergence.

23 A growing empirical and methodological debate points to the importance of this complementarity. For
example, Corrado et al. (2017) establish how returns to ICT crucially depend on “unmeasurable” intangibles,
thus detecting an ICT-intangible capital complementarity in macro-level data both for U.S. and EU. Comple-
mentarity argument in present also in Crouzet et al. (2022): since intangible capital lacks a physical presence,
its functioning require a storage medium.
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FIGURE 1: CROSS-INDUSTRY DISPERSIONS OF CAPITAL TYPES

Note: the figure depicts dispersion across industries of average real log-wage, physical, ICT, intangible capital types and
digital equipment per capita. Solid red and blue lines are related to wages and ICT capital, while dashed green, orange and
purple lines are intangible capital, digital structures, and physical capital, respectively, all taken in per capita log-terms.
Panel 1a plots the yearly difference between top and bottom 10% of each component, while Panel 1b plots the associated
log-variance. Series are standardized and indexed to 1 in 1998, so that both y-axis indexes the respective measure given the
initial value at unity. Plots are referred to 3-digit U.S. 2017 NAICS industries. Source: BEA and own calculations.

Table A.1, where a set of Fixed-Effects (FE) panel regressions confirms the above
regularities. While a point increase in physical capital increases real wages, the
point increase in per worker ICT capital is less significant (column 1): this lack
may be interpreted as being driven by an heterogeneous effect across industries.
Relevant is the role played by intangible capital, while less importance is owned
by digital equipment: intangibles seem to control major variation in wages (column
2); the interaction between intangibles and digital equipment (column 3), if further
combined with all the other types of capital (column 4), is still significant to account
for the variation in industry real log-wage.

1.3. ACCOUNTING FOR WORKFORCE COMPOSITION

Production does not occur with capital only. A thorough examination of wage disper-
sion necessitates a careful consideration of the composition of the labour force within
each industry. To this end, reference is made to the U.S. Bureau of Labor Statistics’
Occupational Employment and Wage Statistics (OEWS) programme, which provides
comprehensive data covering over one hundred occupational categories. The final
dataset employed in this analysis comprises information on 62 private-sector indus-
tries at the 3-digit U.S. 2017 NAICS system over the period 2003-2022. This dataset
forms the empirical foundation for the subsequent investigation.

Since their advent, advances in technical and technological processes have raise
the issue of their underlying effects on employees’ qualification requirements at both
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aggregate and industry layers (e.g., Horowitz and Herrnstadt 1966, Rumberger 1981,
Autor 2022), and that the mechanism through which these impact workers does not
transmit uniquely on the absolute level of occupational employment, but especially
in its relative term.?* A natural intuition to analyse is whether changes in the rel-
ative workforce of each task are related to changes in the mass of employed workers
hired by industries, or whether these shifts occurred due to movements in the labour
tasks’ composition within those industries, that is, how much of the change in the
relative labour force of a task can be attributed to changing sizes of industries and
how much it is due to changes in the reallocation of worker-types within those indus-
tries. Denoting the set of tasks as {4,4'} € A and with s € S that of industries, the
following labour force decomposition provides the answer to this inquiry:

(i) - 205 (@) ~ E(wes)» (1) o

N J/

within-industry: substitution effect between-industry: size effect

Shifts in the economy-wide ratio of task-a to task-a’ can be decomposed in within-
and between-industry: the first component isolates movements in the task ratio

(f((;/,%) keeping constant an expansion in the industry-specific task workforce rel-
£(a,s)

ative to its total employment < ) >, while the second term accounts for changes
in the share of each task in the total industry labour force, absent any dynamics
in the task ratio.?? In other words, the within component reflects changes in the
task ratio, namely the ratio of task-a to task-a’ in each industry (thus capturing the
substitution and reallocation of tasks), while the between component reflects varia-
tions in the share of a given task relative to total occupied workers in the related
industry (thus capturing the relative size of each task’s workforce). Figure A.3 plots
the dynamics in the fitted values of both routine and non-routine shares of industry-
specific labour force computed from a Fixed Effects (FE) regression with both year
and industry fixed effects. As it appears, in the time window I am considering the

presence of non-routine workers is increasing over time while occurring a routine
share decline: this raises the question on the logic behind such structural change,
that is whether the labour force composition of each industry is changing in size, or
whether industries are more keen to employ non-routine workers at the expense of
routine ones; this is exactly the point captured by eq. (3).

The output of the decomposition is reported in Table 2: upward movements in
the task ratio of non-routine over routine workers over time occur within industries,
meaning that the industry-fraction of non-routine workers is not increasing due to
the expansion of the industry labour force, but rather to the replacement of routines

24 Refer to Melman (1951) and Braverman (1974) for an analysis over the period 1820-1970.

25 Note that the changing components, A (x), reflect the fitted linear trend of x estimated from a panel Fixed
Effects (FE) regression with both year and industry fixed effects, the same regressions used to plot the aggre-
gate dynamics of task-specific linear trends in Figure A.3.
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TABLE 2: LABOUR FORCE COMPOSITION

routine non-routine
interval within between within between
2003-2008 83% 17% 38% 62%
2009-2015 81% 19% 58% 42%
2016-2022 78% 22% 69% 31%

Quantification of eq. (3); changing components (A) are linear trends predicted
by a Fixed Effects (FE) regression of the form (y: | X;) = Bc + Bt X¢ + uy, with
y representing the task ratio, and X a vector of industry and year fixed effects,
at 3-digit U.S. 2017 NAICS industries. Source: BLS and own calculations.

with non-routines.?® Opposite result is thus obtained for the task ratio of routine
over non-routine workers: routine workers’ share increases due to an expansion of
the industry labour force, even if such change is contained (small increase) over time.

FAcT 3 (Labour force composition) Increases in non-routine relative share are de-
termined by a substitution effect rather than by the employment size of industries.

Finally, I combine the results for capital types with that of labour force compo-
sition. The central question to address is whether industries that have experienced
significant real wage growth are also those increasing their ICT capital and hiring
more non-routine workers. In this context, non-routine workers are those whose jobs
are more reliant on ICT, in contrast to routine workers who tend to perform manual
tasks, as explained later in the model. To this end, I perform a set of industry-level
panel Fixed-Effect (FE) regressions by dividing industries according to their position
in the real log-wage growth distribution

Y <Alog (we(s)) | Xilwt,Zjlwt) = Bew + BiwXiwt + 6jwZjwt + Ut (4)

with w identifying each quantile in Table 1, A; bundles percentage changes in
both ICT-to-physical capital (k) and non-routine-over-routine workers (/) ratios, and
Z; serves as controls. While the purpose is not to establish a direct causal relation-
ship, it is worth noting that industries with the largest increases in real log-wages
are also those where both ICT capital and non-routine workers shares have grown
considerably. In fact, as shown in column 3 of Table A.2, the coefficient Baxxav, re-
flecting the effect of joint changes in ICT capital and task composition, has a notably
stronger and statistically significant effect (.919) on real log-wage growth than dis-
jointed changes (.009 and .035, respectively). Moreover, their interaction’s impact is
particularly pronounced in industries at both ends of the wage growth distribution
— those at the top and those at the bottom, as shown in Table 3 —, aligning with

26 A link between occupational distribution and industries is also present in Haltiwanger et al. (2024) since,
due sorting effects, high (low) paying industries employ high (low) paying workers; however, the substitution
argument across tasks is silent.
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TABLE 3: COMBINED REGRESSIONS BY GROUPS, PERCENTAGE CHANGES

Alog(w(s))
0-25 quantile 25-50 quantile 50-75 quantile 75-100 quantile

Bax -.693 302+ 078 -.082*
(.618) (.072) (.179) (.042)

B 0417+ -297 0157+ .052*
(.004) (.247) (.003) (.025)

Bakxar 876+ -1.304 -.643 1.560*
(.100) (2.945) (.470) (.789)

Significance level at * (p<0.05), ** (p<0.01), *** (p<0.001). Standard error in parentheses. Analysis at 3-
digit U.S. 2017 NAICS industries in 2003-2022. Each Fixed Effects (FE) regression — performed on groups
of industries clustered in quantiles (w) according to their overall growth in real wage — , is of the form of eq.
(4), with X; representing the percentage change in both ICT-to-physical capital and non-routine-over-routine
workers ratios, and Z; being a set of time-varying controls. Variables are all in log format. Constant not
reported to save space. Source: BEA, BLS and own calculations.

stylized Fact n. 1. In fact, it is in the “tail” industries that the interaction between
ICT capital and non-routine workers is statistically significant. Industries at the
top, with the highest wage growth, experience substantial joint increases in both
ICT capital and non-routine workers, driving considerable wage growth (1.56). Con-
versely, industries at the bottom show slower adoption of these factors, thus leading
to weaker wage growth (.876). Not significant (even negative) effect is observed for
industries in the middle, which contribute less to overall wage inequality. Therefore,
wage inequality is primarily driven by the concentrated performance of industries at
the extremes of the distribution, where the simultaneous and joint impact of changes
ICT capital and non-routine labour is most significant. This suggests that the com-
bination of these two factors, rather than isolated changes, plays a pivotal role.

An argument strongly substantiated by a bulk of quantile regressions of the form
Qu (log (wi(s)) | Xiwts Zj,wt) = BiwXiwt t+ 6jwZjwt + Uwt, where w represents each
quantile (defined on the independent variable), and &; and Z; as before. Regressions
are either in log-levels and in log-standard deviation. The results indicate a positive
impact of both the task and ICT-to-physical capital ratios, with the effect becoming
more pronounced as one moves from the lower to the higher end of the industry-wage
growth distribution. These results are shown in Table A.3: the task ratio (B/) has a
significantly greater impact on the increase in real log-wages compared to i, the ICT
ratio (column 1). Increases are not evenly distributed across industries: the impact
of each ratio increases in magnitude along the distribution, with industries farther
from the top experiencing smaller effects (columns 2-5). It is also noteworthy that the
interaction term has a massive magnitude only when considering the regressions in
changes (Barxa¢) as opposed to those in levels (B, /), pointing to the conclusion that
the interaction term is more informative in explaining over-time variations in real
log-wages, rather than their cross-sectional levels.
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Further insights may be gained from Figure A.1, where each line represents the
HP-filtered trend of the annual mean of all the considered ratios across each industry
group. The observed pattern is consistent with previous findings: a clear division
emerges across industries, where more “virtuous” ones — that have substantially
increased their average real wages — are also those that have expanded both their
ICT capital and the share of non-routine workers, with a loured effect when moving
downward the industry-wage growth distribution. Finally, the evidence presented in
Figure A.2 lends support to this hypothesis. When industries are classified by their
position in the real log-wage growth distribution, a positive correlation between the
percentage changes in real wages and the changes in both the ICT capital ratio (the
ratio of ICT to physical capital) and the task ratio (the proportion of non-routine
workers to routine workers) is stronger for industries at the top of the distribution
— those experiencing the highest wage growth, represented by larger circles.

FACT 4 (Structural transformations) Industries marked by highest changes in real
wages experience a substantial rise in their non-routine workers relative share along an
increasing ICT capital ratio dynamics.

When jointly considered, the presented stylized facts reveal some important char-
acteristics of the U.S. inter-industry wage structure: the dispersed increase in indus-
tries’ real average wage is influenced by a growing dispersion in technology (Fact
n. 2); in turn, such technological differences reflect variations in the labour force
composition within each industry (Fact n. 3). In other words, industries that have
experienced a larger and more significant increase in the stock of ICT capital rela-
tive to physical capital tend to exhibit a higher rate of substitution of routine tasks
with non-routine tasks (Fact n. 4). Reminiscent from the introduction, these findings
are opened to two possible interpretations: wage inequality across industries could
be the result of (i) a quantity effect, under different trajectories in factor of produc-
tions; or (ii) a structural effect, stemming from changes in the technological param-
eters that govern the relationship between capital and labour types. These general
equilibrium considerations provide the motivating background to build a model with
industry-specific capital-labour substitutability and heterogeneous labour force com-
position to account for trends in wage inequality in the United States, and will be
explored further in the remainder of the paper.

2. MODEL

To rationalize the presented empirical regularities, I build and simulate a structural
general equilibrium model of structural transformations.The households block fea-
tures a skill-related heterogeneity: households are ex-ante divided in routine and
non-routine workers, and each sorts into firms and industries given heterogeneous
productivities. Final and sectoral outputs are competitively aggregated, while firms
in each industry compete monopolistically; they all use ICT and non-ICT capital
types, where non-routine labour is complementary to ICT capital, while routine
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workers are substitutable. Hence, the economy identifies the structure of production
functions to be analogous in all industries except for their degrees of substitutability
across factors of production. To better understand the role of substitution parame-
ters, I do not consider productivity differences across industries.?’

2.1. HOUSEHOLDS

There is a unit mass of households, each labelled as i € Z, split in tasks a = {rt, nrt}.
Household-i of type-a gets utility from consumption, C;, and it is increasing in a
known idiosyncratic factor, pél(a,s), drawn once from a specified distribution, mea-
suring its efficiency level when working with firm- € [1, H| in industry-h € [1, S]:

Ui (a,s) = log C' +log By,(a,s) + ¢l (a,s) (5)

Increasing utility in pi(a, s) suggests that household-i is optimally allocated (i.e.,
endogenously sort) to a workplace that maximizes its productivity.2® This outcome
directly follows from assuming a self-selection based labour market, involving indi-
viduals choosing the firm-industry combination that maximizes their utility based
on their spectrum of productivities across different sectors. In other words, in-
dividuals self-select into workplaces by comparing the potential outcomes of vari-
ous firm-industry pairs. Moreover, borrowing from the spatial economics literature,
I include a firm-h, industry-s amenity for household type-a, entering multiplica-
tively in the utility function (e.g., Kleinman et al. 2023). It is defined as By, (a,s) =
(g1 (a/a’,s)] ¢, where gy, (a/d,s) reflects the relative share of task-a in task-a'
(keeping the same notation of eq. 3), negatively scaled by the elasticity parameter ¢
(an indicator of the degree of substitutability among job tasks).??

An household can invest either in bonds (b!, which are in zero net supply) at the
rate ¢, and in capital types k'(j),Vj = {phy, ict}, while receiving dividends D' from
firms, so that its expected utility problem displays the budget constraint to be

Ci+ I} (phy) + Li(ict) + b} — (1 +1,)b} =
wy,¢(a,5)0),(a,8) + Re(phy) ki (phy) + Ry(ict) ki (ict) + D;

where the wage rate associated to type-a in firm-industry pair (k,s) is wy(a,s),
with labour E;l(a,s) inelastically supplied and set to unity. Any capital stock depre-

27 Sectoral productivity and structural changes are theoretically analysed by Ngai and Pissarides (2007),
linking the elasticity of substitution among intermediate inputs to the sectoral reallocation of employment. In
Section 5 I consider the effect of estimated industry-level productivity series on wage dispersion.

28 An high value for @Z (a,s) indicates that household-i is utilitarianism better off, as it reflects the household’s
ability to achieve its maximum productivity when working as type-a within the given firm and industry (%, s)
tuple. This way of designing the utility function is common in the discrete choice literature (e.g., Card, Cardoso,
Heining, et al. 2018, Hsieh et al. 2019). Due to the absence of a non-employment option and unemployment,
the terms household(s) and worker(s) are then used interchangeably.

29 Below, the component By, +(a,s) allows to characterize the equilibrium wages as a function of the task ratio
too, as in Section 1. Its relevance in determining the endogenous labour supply of eq. (7) — i.e., the outcome of
the sorting choice by the part of households — will be empirically tested and validated in Subsection 3.1.
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ciates at a rate  and accumulates over time according to a quantity-adjusted law of
motion: it is a negative function of ; (the relative ICT capital share) that scales new
capital investment, If (j): as the capital stock owned by household-i becomes more
technologically advanced (higher Cﬁ), a higher rate of capital investment is required
to maintain the future stock of that particular capital type.? Henceforth, the (ex-
ogenous) variable g;' represents the technology level of the total capital stock owned
by household-i.

Inter-temporal utility maximization implies a standard Euler condition for future
path of marginal utility from consumption, and an equation displaying the evolution
of the capital rental rate

Ri= (1+7r41)0 — (1-0) G (6)

in which changes across states of R; are determined by changes in the (aggregate)
relative quantities across capital types, ; = fz g;’ di. In the spirit of Karabarbounis
and Neiman (2014), eq. (6) determines that investing in capital types is profitable as
long as the marginal benefit of investment is at least lower than its marginal cost.

In a market economy workers do not randomly sort across workplaces. Rather,
in a Roy (1951)-style model of self-selection, households locate based on how their
idiosyncratic productivity varies across firms and industries. Dropping time-t sub-
script, the idiosyncratic productivity of household-i, task-a working in firm-industry
(h,s) tuple is drawn once from a multivariate Frechét-type cumulative distribution
-6

(61, (01 h05) 6k, a(0,9) = exp |~ 5 ( [ ohta0)an)
S

Its shape parameter, 6 > 1, governs the degree of dispersion in idiosyncratic pro-
ductivities’ draws (i.e., the labour supply elasticity),?! and lower values of 6 imply
major degrees of dispersion (and thus a more elastic labour supply response to wage
differences);?? without loss of generality, location and scale parameters are normal-
ized to 1. Such Type-I Extreme Value Distribution identifies a discrete choice on
how household of type-a sorts into firm (1, s) given heterogeneous productivity levels
across different firm-industry pairs.33

30 Household-i’s capital dynamics follows a law of motion as ki+1(j) = % + (1- (Sj)k’; (j), Vj = {phy,ict}. A
higher (' ; is an improvement in the technological sophistication of the capital bundle, symptom that any addi-
tional unit of invested capital faces diminishing marginal returns, as described by Inada (1963)’s conditions.

31 Tt measures the centrality of a change in labour supply of task-a induced by a change in its firm-#, industry-
s wage level. Rogerson (2024) stresses the importance of the (aggregate) labour supply elasticity in macroeco-
nomics, pointing to both intensive (average hours worked) and extensive (employed people in the total popu-
lation) margins. In my model only the latter margin (relative task-a share of total employment) is considered,
since households are assumed to supply inelastically one unit of work (so that Zz(a, s) = 1), linking this elas-
ticity to a certain degree of workers’ concentration in the labour market; refer to Figure 2.

32 Higher 0, by contrast, points for a more homogeneous workforce in terms of idiosyncratic productivities of
households across workplaces, and flattens the degree of sorting sensitivity.

33 Self-selection concept dates back to Roy (1951)’s verbal-model, whose scope is to describe how the subjective
choice for a given occupation would affect the distribution of wages: it is not only a function of gaps in potential
wages, but rather it includes also occupational sorting choices. Roy’s idea has been substantially tested in the
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Central implication of this modelling choice is that workers may be employed in
each firm in every industry, but each of them has heterogeneous productivity levels
depending by the firm and the industry where employed. As a consequence, this for-
mulation embeds both absolute and comparative advantage for household-i. Absolute
advantage means that every worker belonging to task-a is technically able to work
in any firm-industry pair. Comparative advantage, however, governs actual employ-
ment decisions: workers choose to be employed in the firm and industry where their
relative productivity in performing task-a is highest; as a result, the allocation of
labour reflects not only wage differentials but also how efficiently workers perform
specific tasks in specific environments. This gives rise to a “segregation” effect, where
firms within industries increasingly employ workers who are especially suited — by
comparative productivity — to their technological and organizational needs.

The labour market, while competitive and frictionless in a traditional sense, is
thus structurally imperfect due to this idiosyncratic productivity heterogeneity. The
distribution of households’ productivities — and thus the self-decision around em-
ployment choices — makes the labour supply to become endogenous, shaped by both
firm-industry level wages and resulting task-specific comparative advantages. De-
scribed sorting preferences allows to derive analytical form for the measure of each
worker-type in firms and industries given the respective wage level: in Appendix B I
show that the labour supply curve of each (4,4, s) takes the form of

([ wy(a,s) By(a,s) o
0 = (ke 5 Brta.5)) ™

with Wy, (a,S) = ¥ s wp(a,s) and By(a,S) = Y, s By(a,s). Labour supply is mod-
elled such that it is determined not only by the absolute wage paid to task-a workers,
but also by its relative attractiveness measured by the “pay premia” effect — i.e.,
how that wage compares to those in other firms and industries. In addition, to at-
tract more workers of similar productivities (the “sorting” effect) a firm within an
industry has to pay higher wages.3*

Such labour supply allows to summarize the role of wage premium, sorting and
segregation, all effects of pivotal importance in shaping wage inequality. Halti-
wanger et al. (2024) highlight how wage dispersion across industries is increasingly
driven by sorting (referred to as the covariance of industry wage premium and the
segregation effect across industries) associated to wage premium.?® Card, Roth-

literature (right after Heckman and Sedlacek 1985 and Borjas 1987), and the macroeconomic implications of
such microeconomics sorting choice have been firstly introduced by Hsieh et al. (2019).

34 As shown in Appendix B, the endogenous sorting decision is determined by a comparison of the combi-
nation of wages and idiosyncratic productivities (thus the total earnings) of working in a given workplace

compared to other ones, i.e., Pr [w(u,s)B(a,s)pi(a,s) > w(a,s')B(a,s") ' (a,s")].

35 Bringing forward the words of the authors, “high-wage workers are increasingly sorted to high-wage in-
dustries with rising industry premia and are increasingly working with each other” (Haltiwanger et al. 2024).
In continuity with the work of Card, Heining, et al. (2013) for Germany, several empirical works (e.g., Card,
Cardoso, and Kline (2016) for Portugal, Alvarez et al. (2018) for Brazil, Barth et al. (2016), Song et al. (2019)
and Haltiwanger et al. (2023) for US, Hakanson et al. (2020) for Sweden, Briskar et al. (2022) for Italy) detect
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stein, et al. (2024a) find how the correlation between workers sorting across indus-
tries and the associated wage premium is high.?¢ In other words, this constitutive
self-selection directly enhances a mechanism on the critical interaction of the work-
places’ labour force composition with sorting and segregation effects, both associated
to the firm-industry wage premium from not perfectly elastic labour supplies.

REMARK 1 (Labour market elasticity, sorting and segregation) Selected spec-
ification of households’ productivities allows to characterize firms and industries
workforce composition of tasks as determined by a not fully elastic labour supply elas-
ticity, shaped by comparative advantage, interacting with equilibrium wage premium
designed through perfect competition in the labour market.

Labour supply curves in eq. (7) are upward-sloping not due to frictions, but due to
the structure of comparative advantage and the imperfect substitutability of workers
across jobs.>” In this sense, workers in the same task are “highly rival factors”
(Hicks 1932) since they can be freely substituted for one another, yet ensuring that
high-wage workers do sort in high-wage firms and industries, and also that more
efficient people would be preferred to get a job in high-wage workplaces than ones
who are less productive.

ASSUMPTION 1 Since households’ productivities are Frechét-distributed, workers are
perfectly mobile across firms within an industry, and immobile across industries.

Parameter 0 governs the elasticity of labour supply and, given that wage levels
offered by firms across industries are the primary driver of employment choices, it
can also be interpreted as a structural measure of labour market concentration — in-
duced by the underlying distribution of household productivities through sorting and
segregation mechanisms. As idiosyncratic productivities become more dispersed, the
strength of these mechanisms diminishes, thereby attenuating labour market polar-
ization. To illustrate the role of 0, Figure 2 provides a conceptual representation of
how variation in productivity dispersion influences employment allocations.

EXAMPLE 1 (Labour market concentration) Consider a stylized economy with
{s1,52,53} € S industries, each represented by a single firm, and three households

how these major effects are increasingly impacting the distribution of wages.

36 Using a cross-sectional approach at sectoral level, Gibbons, Katz, et al. (2005) show how the high-skill
occupational sorting is determined by differentials in return to skills, and the comparative advantage motive,
rather than learning, seems to affect the resulting wage premiums.

37 An important observation is that the presented model traces these effects back to a deeper micro-structural
foundation: endogenous heterogeneity in worker productivity and endogenous allocation of labour in a compet-
itive but non-random labour market in the sense of “new classical monopsony” (Manning 2021). The not-fully-
flexible labour supply (due to parameter 6 # 1) is central to the understanding of how wage premia emerge
and interact with sorting and segregation forces. In this perspective monopsony is not a dynamic search-and-
matching friction; rather, its static nature ensures the labour supply elasticity a notable role, affecting labour
in a fully competitive labour market. Even if I will not allow firms to take their respective labour supply of
each task-a as given (not encompassing a proper monopsony power), the equilibrium wage level of firm (k,s)
directly determines the number and the type of workers working there through sorting and segregation effects.
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0 = low

FIGURE 2: PRODUCTIVITY DISPERSION, SORTING AND SEGREGATION

Note: these graphs display some stylized examples on how productivity dispersion of households relates to labour market
concentration at industry level. Each i* represents an household of task-a, while s is a specific industry. The higher is
the value of 0, the lower is the dispersion of households’ productivities, so that the larger are the effects of sorting and
segregation, thus the higher is the degree of labour market concentration of workers across industries.

of unique type-a. Households’ productivities may acquire only three values, ¢'(a,s) =
{low,middle, high} depending where employed, with parameter 6 determining even
dispersion. When 6 = low, productivity levels are highly dispersed across households
and industries, leading each household to sort into a different industry, and resulting
in low labour market concentration. Conversely when 0 = high: productivities result
to be very clustered, with all households concentrating in the same industry, thereby
generating strong polarization. An intermediate case occurs when 60 = middle, yield-
ing to partial sorting pattern and reflecting moderate labour market concentration.

Under a broader perspective, I am interpreting the degree of type-a workers’ con-
centration at industry level to be directly proportional to the degree of variability in
households’ productivities (and therefore to the labour supply elasticity).

2.2. INDUSTRIES

The supply side is made of a countable set of industries s € S, each producing a spe-

cific variety y(s). A perfectly competitive final good producer combines intermediate

outputs from industries using a Constant Elasticity of Substitution (CES) technology
1

Y = (Z y(s)”;l) :

where 7 > 1 is the elasticity of substitution among varieties of differentiated
goods/services from industries. Final producer’s optimizing behaviour gives birth to

. . . -
arelative demand of each industry-s output, given by &YS) = (@) , with aggregate
1
price index P = (ZS p(s)l_’7> "7 since final good is competitively supplied.
A unitary mass of monopolistically competitive homogeneous firms, indexed with
h € H, is comprised in all industries. Given market power of firms, aggregation for
industry-s bundles together different varieties by a new CES aggregating function

v = ([ w7 dh)eil
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where € > 1 is the sectoral elasticity of substitution among firms’ varieties. In
a way analogous to final producer, the conditional demand of firm (%, s) arises from
competitive profit maximization at industry level:

nis) = (2) "yt ®

1
with the sectoral price index being the numeraire, p(s) = ( fol pr(s)t—¢ dh) =,
Firm-h in industry-s comprises two types of workers, a = {rt, nrt}: non-routine (nrt)
workers are complementary to ICT capital, while routine (rt) labour force is sub-
stitutable with the ICT composite good produced under the non-routine-ICT capital
complementarity. The production function y = f (kphy, kict grt, E””) of firm (h,s) ex-
ploits that in Krusell et al. (2000), that is

ynls) = (ku(phy,s))" [y (tart))"+ (1= w) (qh<s>)1 N

with 9)

M) = [2‘ (kalict, )" + (1= 1) (zh(mt,s)ﬂ ‘

where kj,(phy,s) and kj,(ict,s) are non-ICT and ICT capital, ¢;(rt,s) and ¢;,(nrt,s)
are measures of routine and non-routine workers, while # and A are just weighting
parameters that govern output share of each firm (%, s); parameter « is the physical

. .. . . —1 _
capital share of output. Elasticity indicators (¢,¢) are ¢ = - and ¢ = =
ASSUMPTION 2 Substitution elasticities ps,0s € [O,oo), physical capital and dis-
tributive shares s, s, As € (0,1) are industry-specific. Since elasticities are finite,
each industry adopts strictly positive levels for capital and labour quantities.

Parameters are all industry-s specific and will be ad-hoc calibrated, yet not sub-
scripted to save on notation. In particular, p is the elasticity of substitution between
ICT capital and non-routine labour input (i.e., the CES composite), while ¢ identifies
the elasticity of substitution between routine labour input and the CES composite.
The CES structure imposed above yields a symmetry constraint in the interpretation
of 0: it is implied that the elasticity of substitution between routine and non-routine
workers is the same as that between routine labour force and the ICT composite (see
ibid.), and I will refer to them interchangeably. Capital-task complementarity re-
quires that ¢ > p: this condition resorts the idea that technological process (namely
an increase in ICT capital relative to non-ICT one) widens the relative demand of
non-routine labour force, thus lessening that of routine workers.

Given the market structure, the formation of wages is decided at firm level consid-
ering monopolistic competition among firms in the same industry. Profit maximizing
behaviour thus implies the Cobb Douglas-nested CES production function in eq. (9)
to be subject on the conditional firm demand in eq. (8):
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max Diu(s) | yu(s)
Pr(s)kn(js)ln(a,s) [ ]

with Dj,(s) being the profits of firm-/ in industry-s. Within an industry, firms
are all homogeneous; thus, any wage decision by firm (%, s) is not going to alter the
sectoral wage level.?®

ASSUMPTION 3 Firms are atomistic, so that any wage level offered by a firm (h,s)

only does not affect the sectoral one: aazZ;(({ZSs)) =0Va,h,s.

Under this assumption, equilibrium wages paid by firm (1, s) are set, for routine
and non-routine workers, respectively, to

i B e i) \O6—D] T
w(rt,s) = | A(s) x(rt,s) (k(phy,s)) V(s) ¢ (V\%) S 1

(10)

I f ol o . 0(0—1)] T
w(nrt,s) = |A(s) x(nrt,s) (k(phy,s)) V(s) ¢ Q(s)e (M) ]

where industry-specific composite parameters are given by x(rt,s) = (1 —a)u and
x(nrt,s) = (1 —a)(1 —u)(1 — A), while A(s) = p(s) M~! is an indicator combining
the industry-specific price level multiplied by the price mark-up, M = %4, and the
aggregate element WB(a,S) = Y s Wy (a,s)By(a,s); refer to Appendix B for the defi-
nition of the other components. Aggregate industry wage is thus found by averaged
aggregation among job tasks: w(s) = (A) ' ¥, w(a,s).

Before delving into the intuition behind each of the equations, it is important to
establish a clear understanding of why wages are considered at the industry level:
gaining this foundational insight will help to better contextualize eq. (10).

PROPOSITION 1 (Firm and industry layers) In an economy characterized by sort-
ing and segregation effects and a not perfectly elastic labour supply where the measure
of workers in a given firm is determined by its wage relative to the others, as long as

(a) firms within an industry have the same size; or
(b) workers are perfectly mobile across firms within an industry,

dy(a,s) _ dly(as)
owy(a,s)  owy(a,s)

dwy(a,s)  owy(a,s)

and dly(a,s)  ly(a,s)

profit-maximizing wages set by firms in a specific industry are equal, and thus the
unique optimal wage level can be directly written under industry notation. Moreover,

(¢c) workers are immobile across firms between industries.

Proof in Appendix B.

38 This assumption is a natural outcome in the proof of Proposition 1 in Appendix B.
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Besides formal proofs, the movement of workers across firms and industries is di-
rectly influenced by the assumed distribution of households’ idiosyncratic productiv-
ity parameter pﬁz(a, s). In fact, it could be not necessary to impose whether workers’
movements are free or not, since the max-stability property of the Frechét distri-
bution ensures that a worker, once choosing a workplace, will not move nor across
firms neither among industries: since households’ productivities are so distributed,
such property guarantees that its maximum is as well distributed (from Mc Fadden
1974). As a result, each household always picks its utility-maximizer productivity
level (p;'l(a,s)max). Note that the imposed within-industry firm-homogeneity implies
that each worker performs its job task content with the same productivity among
firms in the same industry, i.e., pi'l(a,s) = p;'l,(a,s) with ' ={1,...,h,...,H} €s.

REMARK 2 (Max stability and workers’ movement) As from eq. (5), a worker
has no incentive to choose a workplace where performing worse since

Ui(a,5) | (@, Shmax > Ui(a,5) |V 64(0,5) € [04,0,5)min, 940, max )

is ensured by each worker’s selection of its maximal productivity for the (h,s) tuple. In
addition, since firms are symmetric within an industry, the sorting choice is uniquely
driven by the dispersion of households’ productivities between industries so that work-
ers are free to move across firms within an industry while getting the same utility.

Interpreting eq. (10), both wages are increasing in non-ICT capital and with the
price level, and each wage level considers the economy-wide wage of each task. Due
to the imposed production structure, the wage series for non-routine workers is di-
rectly affected by the evolution in the ICT composite, namely the joint evolution of
ICT capital and non-routine workers, while that of routine workers does not. In ad-
dition, differences among tasks are also reflected in the unlike importance of the two
elasticities of substitution, p and o: while routine workers are first-order impacted
by the elasticity of substitution among themselves and non-routine workers, the lat-
ter group is majorly affected by the elasticity parameter proper of the ICT composite,
namely the elasticity of substitution between ICT capital and non-routine workers.
It should be further noticed that the two elasticities have second-order impact on
wages due to their presence in total industry output, V (s). Consistently, an increase
in the industry benefit of a job task, due to a substitution effect (¢) following an in-
crease in the relative share of the other task, drives up wages: for example, since
optimal conditions refer to average wage of routine (non-routine) task, an increase
in B(rt,s) implies that there are more non-routine relative to the number of routine
workers, thus driving up (down) the average wage of routines (non-routine) workers.
Moreover, both wages are not decreasing in their aggregate task wage in W(a, S),
but rather increasing if (0,¢) < 1 holds, as of a later estimation in Subsection 3.2.3?
Cross-sectional differences in p and o do not reflect only divergences for compara-

39 . —6(leg]-1) .
In this case there would be that [Zs Wy (a, s)] with —0( [o,¢] —1) > 0.
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ble tasks, but especially across industries. Under no differences, if the industry-level
distribution of capital and worker types is the same, then wage premiums would
have been identical. What I am uttering here is that industries’ characteristics re-
lated to the way in which these are organizing their own production plans are cen-
tral to explain real wage differentials, whose divergence is mainly determined by
different degrees of complementarity/substitutability among factors of production.
These two parameters will be ad-hoc calibrated later on, thus reflecting structural
differences among industries. Moreover, elasticities are not the only industry-specific
parameters: there is also the block of “share” parameters comprised in x(a,s), Va,s.
These are the physical capital as a share of output («), and the weights associated to
both routine workers () and ICT capital stock (1) in the production of industry out-
put y (s). Note how such parameters, as the pair (p,c), do not reflect cross-sectional
differences among tasks (they are the same within industries) but only that across
industries, meaning that the model is particularly suited to study inter-industry
wage differentials, and not those across tasks.

Finally, parameter 0 is common to all industries since it reflects the strength
of sorting and segregation effects thus proxying the economy-wide level of labour
market concentration (as in Figure 2). The underlying idea beyond is that of a single
distortion in the labour market: as sorting and segregation effects become stronger
the workforce composition of each industry is less diversified, and the economy would
experience a structural movement of given tasks towards selected industries.

Closing the model, profit maximization by firm-/ in industry-s not only displays
the optimal amounts of each type-a’s wage rates, but also a choice on the optimal
quantities of both ICT and non-ICT capital stocks:

kn (phy,s) : ph(s)fkh(phy,s) = MR(phy)
ki (ict,s) = pn(S) fi, (ict,s) = MR(ict)

(11)

where M = % is the (constant) price mark-up, fkh(j,s) being marginal products
of both capital types from the production function specified in eq. (9), and R (j) the
capital-specific rental rate, for j = {phy,ict}. Note that these conditions are pivotal
to determine how to estimate the elasticity combination (p,c) as from eqgs. (12)-(13).

According to the structure of the model, equilibrium conditions read as follows.

(Equilibrium) An equilibrium for this economy is defined as an households’ choice
of job place, a combination of factors’ prices (w(a,s), R(phy), R(ict)), and a set of ag-
gregate quantities Q = {Y,K(phy), K(ict), L(rt), L(nrt) }, such that

(a) Each household picks the firm-industry tuple that maximizes eq. (5);

(b) According to the occupational choice, each household maximizes its expected-
utility version of the utility in eq. (5);

(¢) Final and sectoral good producers maximize their revenues;

(d) Given the availability of workers in each job task as in eq. (7), optimal wages
are determined by the equilibrium of labour demand and supply;
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(e) Firms choose also capital bundles to maximize their profits;
(f) All markets clear, shaping Q).
Proof in Appendix B.

3. FROM THEORY TO DATA

In this section I quantitatively evaluate the model and bring it to the data. To gauge
the performance and the consistency of the model in addressing salient features of
the inter-industry wage structure of the United States economy, I split the universe
of industries into three groups (following the “contribution” result — Fact n. 1 — of
the data motivating section), namely the top 25%, the middle 50% and the bottom
25% of industries according to the overall growth in their real log-wage. The time
window considered is the usual, spanning from 2003 to 2022.

3.1. VALIDATING THE MODEL IMPLICATIONS

As a first step to validation, I turn to analyse two main implications arising in the
model; the following results should be interpreted as pure correlation.

Wage equation.— I start by quantifying the relevance of the labour force compo-
sition on the industry-specific wage level. In fact, beside the usual role of capital and
labour types in both V (s) and Q (s), the resulting industry-specific wage level aris-
ing by the aggregation wage specifications in eq. (10) considers a sizeable role of the
industry benefit of each task, namely B(a,s) Vs, which points directly to the substi-
tution among job tasks at the industry layer. To offer a better understanding of this
factor, I now quantify its role by providing reduced-form evidence on how it impacts
industry wages.*? In this respect, a set of panel Fixed Effects (FE) regressions

y(log(wt(s)) | Xi,t/ Zj,t) = ﬁc —+ ,BiXi,t + 5]'/th/15 + u;

where X comprises the regressors — task ratio and its inverse, ¢ (-) — and Z; is a
set of employment-related controls, is performed. Results are presented in Table 4,
in which each column identifies a different specification. Column 1 reports the base-
line estimation, with industry Fixed Effects (FE) only: a positive effect of increasing
both ratios is detected, with the ratio of non-routine over routine workers having a
stronger impact on industry real log-wage; this confirms either stylized Fact n. 4 and
the theoretical wage setting equations. More, the role of industry-related character-
istics is in column 3, where I address cross-sectional results by avoiding to consider
Fe across industries: in this setup, increasing the share of routine in non-routine
workers would decrease wages, thus contrasting with the industry-level aggregated
version of eq. (10). The direction of the impact of relative non-routine tasks ratio

40 As a reminder, the model distinguishes between two types of workers, a = {rt,nrt}, so that B(rt,s) =
- -6
[( (rt,s) /¢ (nrt,s)} and B(nrt,s) = [( (nrt,s) /¢ (rt,s)} , where fractions are identified by g (-, s).
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TABLE 4: INDUSTRY WAGE AND RELATIVE TASK SIZE

log(w(s))
(1) (2) (3)
o(rt/nrt,;s)  .016**(.006) .001 (.007) -.020%**(.002)
g(nrt/rt,s) 129%%(.036) .250***(.084)  .318"**(.043)

Industry FE v v X
Time FE X v X

Significance level at * (p<0.05), ** (p<0.01), *** (p<0.001). Standard error in
parentheses. Analysis at 3-digit U.S. 2017 NAICS industries in 2003-2022 on
N = 1240 observations. The Fixed Effects (FE) regressions are of the form
y (log (we(s)) | Xt Zj,t) = Bc + BiXis +0; 2 + us, with X; being the regressors, and
Z; a set of controls. All series are in logs. Constant not reported to save space. Source:
BEA, BLS and own calculations.

remains unchanged but sizeable compared to the baseline specification.

Employment and relative wages.— Another central hypothesis of the model
arises from the labour market since the measure of task-a in industry-s takes the
form of eq. (7), those linking task-employment levels to relative nominal task-wages.
Regression procedure involves the same computations as in the case of the wage
equation, and results are shown in Table C.1. The model well suits with the empirical
relation, since both employment measures increase with the associated relative wage
level. Sizeable effect is for routine workers, and even more for non-routine workers,
meaning that as an industry increases its wage of a given task relative to the rest of
the economy, then employed workers in that task increase as well.

Having in mind the role of labour force composition on industry wages, and the
interconnection between the considered task measure and its relative wage, the main
model’s implications are empirically corroborated. Next, I calibrate and validate the
model’s ability to address the main features of the U.S. inter-industry wage structure.

3.2. CALIBRATION

The vector of structural parameters to be calibrated is ® = (ocs, €, As, Us, 0, ps, O'S)VS,
and comprises features of both households and industries. A total of 17 parameters
has to be computed; the strategy to estimate their values can be summarized in
three steps: (i) some parameters are calibrated directly from the data, and some are
externally taken; (ii) the elasticities of substitution are directly estimated following
the procedure in Karabarbounis and Neiman (2014) via panel robust regressions;
finally, (iii) most of the parameters are internally estimated by moment-matching of
key features of the U.S. economy. A summary of the calibrating procedure can be
found in Table 5, where I report values either for each group of industries, and for
common economy-wide parameters, and the types of estimation performed.

Data and external calibration.— The elasticity of substitution among different
varieties (€) is externally set to 6 (so to have an annual mark-up of 20%). Differ-
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TABLE 5: SUMMARY OF CALIBRATION

value

parameter bottom middle top global source
% physical capital, share of y(s) 0.263 0.195 0.514 data
€ demand elasticity across firms 6 external
U weight of routine workers in y(s) 0.676 0495 0.337 MSM
A ICT capital share in Q(s) 0457 0465 0451 MSM
0 households’ productivities dispersion 11.3 MSM
0 EoS, ICT capital and non-routine 0.329 0.420 0.249 estimation
o EoS, routine and ICT composite 0.634 0.400 0.766 estimation

Set of estimated parameters of the model. “data” implies that the values are directly computed from data sources, while
in “external” I choose standard calibrated values from the literature. “MSM” refers to the Methods of Simulated Moments
as in Mc Fadden (1989). “estimation” refers to previously estimated values under a specific procedure; these values are
taken from Table 6.

ently, the production functions’ share of non-ICT capital («) are directly taken by
manipulating data from BEA: as in Arvai and Mann (2022), I compute one minus
the share of labour of total output, adjusted by considering the weight of non-ICT
capital in the total capital stock of each group of industries. This procedure reports
a = {0.263,0.195,0.514}, order from bottom to top groups.*!

Elasticities of substitution.— The key model parameters, namely (ps, 05)y,, are
estimated through the general equilibrium dimension of the model using the pro-
cedure outlined in Karabarbounis and Neiman (2014). For each industry-group, by
defining the labour, capital and profits all in terms of income shares of total output,
to then blending them with the F.O.C.s from the industry side — eq. (11), aggregated
across firms and industries — to exploit the evolution of the capital rental rate in
eq. (6), I am able to express the resulting equation in differences across two given
periods. Taking a linear approximation around zero over-time trend, two separated
procedures end up with two estimating equations that both relate the industry-level
labour share s, (s) of a specific task with the relative quantity of ICT capital:*?

sp¢(nrt,s)

T sy (nrt, ) L0P7H8) = Bet (p = 1) € (s) + (12)

and

4l Estimates are consistent with the argument against the usual “alpha equal one-third” rule — that the
elasticity of output with respect to capital (i.e., the capital share of output in a neoclassical production function)
is 0.33 — by Vollrath (2024) for the U.S. economy in 1948-2018.

42 In Appendix C I sketch the solution to get the two estimating equations; refer to Karabarbounis and
Neiman (2014) for further details. Note how these equations can be recovered from the general equilibrium
properties arising in the fully specified model.
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PSS = et (=0T + iy )+ 13)
where hatted variables identify their own percent change between arbitrary ¢t
and t — 1 periods, and { is the industry-related quantity of ICT capital relative to
physical capital. The first equation allows to estimate the elasticity of substitution
between ICT capital and non-routine workers (o), and it is derived by treating the
ICT composite as a nested intermediate output.*® Differently, eq. (13) estimates the
elasticity of substitution between routine and non-routine workers (¢); such equation
is derived from the full specification of the production function in eq. (9). Note that
my estimates of the above regressions are not ,Bé ) ( o, 0] — 1), but rather directly
the pair (p, o) since the output variable on the left-hand side (labour share trend) is
augmented with the trend in the relative stock of ICT capital, 7 (s).

The idea behind the two equations is straightforward. A negative relationship
between trends in the labour share and trends in the relative quantities of capital
occurs only when the two estimated elasticities report a certain complementarity
degree, (p,0) < 1: taking out other possible economic factors (such as output produc-
tivity, capital-or labour-augmenting technology, profit share’s or mark-up’s growth),
an increase in the relative quantity of ICT capital determines a consequential drop
in the labour share of each occupation profile.** A graphical visualization of this
negative relationship is in Figure C.1, where each panel plots the estimated left- and
right-hand sides of egs. (12)-(13), respectively: for both estimated elasticities, indus-
tries experiencing major increases in ICT capital stock relative to the non-ICT one
are also those industries experiencing larger drops in both measures of labour share.
The estimated overall correlations between trends in both labour shares and relative
ICT stock among 3-digit U.S. 2017 NAICS industries are corr, = -0.76 and corry =
-0.75 between years 2003 and 2022.

Since I am considering a relative small time window, the estimation may suffer
of potential outliers; a robust regression is performed in order to assign less weight
(after some numbers of iterations) to data points which lie away from the regression
45 The resulting estimates of egs. (12) and (13) are reported in Table 6. First
thing to note is that each group of industries but the middle one is characterized by

line.

1
0

43 In this specification, “output” is only determined by g;, (s) = [/\ <kh(z’ct, s))g +(1-27) <€h(nrt, s)) Q} .

44 The framework is reversed compared to that in Karabarbounis and Neiman (2014), where they need the
elasticities to be greater than one, so that a drop in the user-cost of capital induced by a fall in the relative
price of investment would determined a drop in the labour share due to a substitution effect between capital
and labour which drives down the labour force as a share of total output. I decide to use quantities instead of
prices since these can be directly observed industry by industry in the BEA tables.

45 As done by Karabarbounis and Neiman (ibid.): to overcome the impact of possible violations in Ordinary
Least Squares (OLS) assumptions on the estimates due to few observations, this methodology downgrades the
importance of outliers (characterized by larger residuals) so that the weight of each observation is no longer
% in a data sample with n observations. At each iteration, robust regression process drops observation whose
Cook’s distance is larger than 1 (high leverage points).
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TABLE 6: BASELINE ESTIMATION

o Std.Err  95% CI o Std.Err  95% CI
bottom 329 .04  [250,.407] 634 08  [482,.785]
middle 420 .02  [375,.466] 400 .05  [310,.491]
top 249 .03 [.188,.310] 766 .06  [.656,.877]

Estimation of the elasticities of substitution as given in eqs. (12) and (13), for 3-digit U.S. 2017 NAICS
industries over the period 2003-2022. p refers to the estimate of the pair ({(nrt,s); k(ict,s)), and it ex-
ploits the degree of substitutability between non-routine workers and ICT capital; o relates to the pair
(€(rt,s); [€(nrt,s), k(ict,s)] ), and it is the degree of substitutability between routine workers and the joint
combination of non-routine workers and ICT capital.

ICT capital-non routine tasks complementarity since it holds that o > ps for any
s = {bot, top}, reflecting an even adoption of technological change and thus an even
effect on the composition of labour force across industries, but with an uneven impact
since the (p, o) differential has different magnitude across groups of industries. Con-
sistent with Section 1, top industries exploit, more than the other industry groups,
the reallocation of tasks in their industrial composition due to changes in technology.
I now interpret the estimated values, which are all statistically significant.*6

Start from p: top industries are those which have strongest ICT capital-non-
routine workers complementarity, followed by bottom and middle industries, since
p ~ 1 points for major “gross substitutability”. This implies that top industries are
maintaining more non-routine workers alongside to a marked stock of their ICT cap-
ital compared to the other groups of industries. Moving to the elasticity of substitu-
tion between routine workers and ICT composite good (or, due to symmetry, between
routine and non-routine tasks), o, a value closer to 1 implies that industries are less
keen to keep their actual number of routine workers when the stock of ICT capital,
together with their number of non-routine workers, increase. This is what Table 6
reports: top industries have lower propensity to employ routine workers at an equal
rate of non-routine ones, while this is not the case for bottom industries, and even
less true for middle industries. Estimated values for the elasticities of substitution
allow to consider substantial differences in the degree of structural transformation
across industries, implying an heterogeneous rate of reallocation of economic activity
towards selected industries: this reallocation is driven by differences in prices and
quantities of capital-labour pair at industry level, which are captured by the trends
in the considered labour share measures. More, estimates are consistent with the
prediction of the wage determination in eq. (10): an industry, to have higher wage

46 Measuring the elasticity of substitution between capital and labour is challenging since it is due to both
demand or supply factors. Yet, there is no a general consensus on its exact value. Available — either aggre-
gate or sectoral — estimates range between 0.3 and 0.9 (Arrow et al. 1961, Klump et al. 2007, Herrendorf,
Herrington, et al. 2015, Alvarez-Cuadrado et al. 2018, Oberfield and Raval 2021), and between 1.25 and 1.6
(Piketty 2013, Karabarbounis and Neiman 2014), passing through a unitary value (Berndt 1976). Moreover,
as outlined in Oberfield and Raval (2021), it is unclear whether time-series or micro-level data should be used.

28



premium, should have a low p and an high ¢.

Matching moments.— To conclude the outlined calibration, the left-outside pa-
rameters are estimated by matching salient moments in the data in the spirit of the
procedure drawn by Mc Fadden (1989), the Method of Simulated Moments (MSM).
These parameters refer to each weight (ys, As),, in the production function, plus
the parameter governing the dispersion in households’ idiosyncratic productivities
(0) that drives the strength of sorting and segregation effects. Given the estimated
values for the parameters so far, the calibration schedule leaves out with seven pa-
rameters to be identified, so as to match seven moments: each A’s is related to the
ICT capital share of the related group of industries; each 1/’s is related to the indus-
try group-specific measure of routine workers by exploiting the associated theoreti-
cal definition in eq. (7); finally, since 0 expresses the productivities’ dispersion degree
and thus labour market polarization due to sorting-segregation tuple, I link its value
to the routine real log-wage premium of top relative to the bottom group.*’

To match key moments of the production structure and households’ productivities
specification, the method estimates the vector of parameters 0= {/\S , Us, 9} associ-
ated to any group, s = {bot, mid, top}, of industries by minimizing the loss function

£(®) = (m(6) i) W(m(®) — )

to reckon © that is, to minimize the distance between the estimated moments
r?z((:)) and the data moments counterpart, m. Element W is an efficient weighting
matrix that allows to implement an efficient estimator.*® Table C.2 summarizes the
resulting output, and compares the targeted data moments (expressed as mean val-
ues throughout the period 2003-2022) with that in the model; the estimation proce-
dure well reach targeted moments, meaning that parameters are correctly identified
given the assumption around the link between theory and data.

Of particular interest is the value of 0: as noticed, it can be interpreted as the
degree of labour market concentration driven by both sorting and segregation effects
working through the dispersion of households’ productivities, thus determining the
(average) labour supply elasticity of households for each firm-industry combination.
Recalling that 8 > 1 I estimate an high value meaning that, over the considered
time window, households do not have highly heterogeneous productivity levels and
thus their choice to get a job in a specific industry instead of another is stronger.
Strictly speaking, the farther 0 is to 1, the more labour market is polarized in terms
of workforce characteristics (stronger sorting and segregation factors): my estimate
of & = 11.3 points for a solid labour market concentration (as in Figure 2), in line

47 In the model, variability in households’ productivity is intrinsically connected to sorting and segregation
choices. More, the dynamics of labour market concentration for aggregate employment is well replicated by
that of routine workers at 3-digit U.S. 2017 NAICS industry level; refer to Figure 4.

48 Practically, I first set it to be an identity matrix whose diagonal elements are the mean values of each
moment in the data, to then update these values using the estimated vector valued function with the distance
between data and simulated moments.
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with the quantification in Yeh et al. (2022) for the U.S. labour market.*’

Comparative discussion of the calibration.— A summary of the parametriza-
tion of the model can be found in Table 5: what this calibration shows is that top
industries (referred to as those whose real wage has increased the most over the
considered time span) are those with the highest ICT capital-non routine workers
complementarity (p) and, at the same time, those which, exploiting such feature, are
more keen to substitute out routine workers in the place of non-routine job tasks
(0). The opposite situation results if considering bottom industries: these have sub-
stantial ICT capital and non-routine workers complementarity, but such degree is
complained by a weaker “gross complementarity” effect with routine workers. These
findings well align with the styled facts that I have presented in the empirical mo-
tivation in Section 1: the share of non-routine over routine workers (the task-ratio)
is changing within industries (Fact n. 3), but if such change is not accompanied by
an increase in the ICT over non-ICT capital share (the ICT capital-ratio), then real
wages of a given industry will not increase as much as another given industry in
which these changes are occurring (Fact n. 4).

Moreover, a considerable share of physical capital is present in the production
plan of top industries («), alongside with the lowest weight of routine workers ().
The wide importance of physical capital besides the estimated weight of routine
workers in top industries is hiding the role of automation, even if the ambiguous
effects of automation are prevalent if one looks at other groups: for example, the bot-
tom group’s share of non-ICT capital is of intermediate relevance, but also the largest
role of the routine workers’ weight.?® A latent indicator of automation effects is also
the estimated ICT capital weights in the production of the ICT composite good (A)
since they reveal that industries in which real log-wages have grown the most are
weighting less ICT capital. Overall, the MSM calibration is a direct implication of
the estimated elasticities of substitution, but also of the assumption that routine
workers are directly neither complement nor substitute with physical capital.

3.3. MODEL FIT

The validity of the calibration strategy can be assessed by checking the strength of
such estimated and calibrated parameters by referring to how the model performs
in targeting some other data moments. In particular, I study how the model com-
pares to the U.S. group of industries in the considered sample when addressing mo-
ments that were not targeted in the estimation procedure. Table C.3 reports how the

49 Authors detect how concentration — due to employer market power, referred to as aggregate markdown
(ratio between wages and marginal revenue product of labour) —, decreased between 1977 and 2002, but
thereafter it has been sharply increased. Such turn is well captured even at industry level (refert to Figure 4).

50 Automation (industrial robots and artificial intelligence) favours a dismissal of routine jobs and rises the
employment share of non-routine workers. At industry level, the literature is unclear on the employment
growth or reduction, or whether the effects depend on the type of industry; refer to Filippi et al. (2023) for
a detailed review and discussion on the effects of automation. Henceforth, in this model automation effects
might be indirectly measured only through changes in (s, ys, As)ysg-
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FIGURE 3: MODEL AND DATA COMPARISON

Note: the figure shows the comparison between the model series and the related series in the data. Panel 3a represents the
correlation in the baseline equilibrium between the task ratio (non-routine over routine tasks) with the empirical and model-
implied real log-wage level, and the corresponding lines show the linear fit of the correlation; Panel 3b plots the parametric
curves associated to quantiles of the considered HP-filtered series (model vs. data) one against each other. Series are scaled
to be in the same range for graphical comparison. All plots consider industries to be grouped in terms of bottom, middle,
and top industries’ groups. Red circles refer to the model, while red ones to the data.

model-related moments coincide with the untargeted data moments, expressed as
percentage changes from the initial to the final steady states.?’ Model performance
captures very well the direction of the untargeted moments in the data. I pick all
the moments related to the wage structure in the economy, and evaluate the fitting
also at the industry-group levels. The only moment the model is not able to target
is those related to non-routine wages of the middle group. An important observation
is that almost all the appraised wage-moments have negative slope, thus linking my
model to the secular decline in real wages (e.g., Massenkoff and Wilmers 2023). The
only increasing moments are the “top/bottom wage ratio” and the “aggregate task
premium” (reflecting the wage premium of non-routine over routine tasks), making
the model suitable for studying the evolution of this wage gap.

Another central hypothesis to validate in the cross-section is the model’s ability
to capture an increase in industry real log-wage following a rise in the task ratio, as
discussed in Subsection 3.1. To this end, Panel 3a plots the correlation between the
share of non-routine workers over the mass of routine workers and the industry wage
as both in the data and in the model. Imposed model structure is able to successfully
replicate the upward-sloping correlation implied by the data, an indicator of having
implemented the correct strategy to calibrate all the parameters featuring the model.

Wage variances.— Finally, the primary scope of the model is to detect the in-
dustry’s determinants that account for between-industry wage inequality, moment

51 Further untargeted moments are in Tables 7; still, data approximation is good.
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TABLE 7: IMPLIED FIT OF WAGE VARIANCES

moment data model
routine wage variance, across industries 2.285  2.289
non-routine wage variance, across industries 2314 2311
between-industry wage variance 2299  2.300

Comparison of the model fitting of the data for moments related to 3-digit U.S. 2017 NAICS
between-industry real log-wage variance structure over the period 2003-2022; variances are
computed according to eq. (1). The first two rows compute this measure for routine and
non-routine tasks, while the last row directly reports the wage dispersion across industries.

not directly targeted in the MSM parameters’ estimation. Table 7 reports the fitting
of real log-wage variance across industries for routine and non-routine workers, as
well as that for industry-specific wage rates. Tasks’ specific variances are computed
according to eq. (1) given the analytical wage series sparking from eq. (10), while
the between-industry wage variance is found by averaging these two dispersion in-
dicators. Given the calibrated values of parameters, the model built has the virtue
of well targeting all the considered measures of inequality on real log-wages.

To conclude, the model performs well in replicating both targeted and untargeted
moments related to the wage structure of the U.S. economy over the period 2003-
2022: fitting is detected either at the aggregate and industry levels, and also for
differences among routine and non-routine workers.

4. COUNTERFACTUAL ANALYSIS

The purpose of the present analysis is to understand whether heterogeneity in the
industrial composition of the U.S. economy has effect on the observed trends in wage
inequality. To this end, I perform a counterfactual analysis to evaluate the contribu-
tion of variations in structural parameters on the levels of between-industry wage
inequality in US. In particular, I fully re-estimate the set of parameters in the model
over two different time-periods, and compute the associated moments implied by the
fully re-estimation procedure when switching on the change in one or more param-
eter at time while fixing the others.?> Central scope of this section is to identify
the main drives of wage-related variance at industry level, and then compute the
fraction of the data explained by the structural model built.

In the set of counterfactual exercises the parameters I am focusing on are three:
the elasticity of substitution between ICT capital and non-routine labour input, i.e.,
the CES composite, namely p; the elasticity of substitution between routine and non-
routine labour inputs, namely ¢; and the productivity dispersion of the households (a

52 This exercise is presented in the main text solely for between-industry wage inequality (Tables 9 and C.8).
In a different manner, in Appendix C I apply the same exercise on between-industry wage variance considering
both routine (Table C.9) and non-routine (Table C.10) workers separately.
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TABLE 8: TIME-VARYING ESTIMATION

2003-2012 2013-2022

o 4 4 4
bottom  355[12] .366[12] 819 [.05] .326 [.06]
middle ~ 431[04] .429[08]  .345[04] .438[.09]
top 408 [.04] 367[12] 508 [.06] .358[.05]

Estimation of the elasticities of substitution as given in eqs. (12) and (13) over differ-
ent time span (2003-2012 and 2013-2022), in absolute values, for 3-digit U.S. 2017
NAICS industries. Standard errors in parenthesis, [-], and 95% confidence interval

significant but not reported. p refers to the estimate of the pair ({(nrt,s); k(ict,s)),
and it exploits the degree of substitutability between non-routine workers and ICT
capital; o relates to the pair (((rt,s); [{(nrt,s), k(ict,s)]), and it is the degree of
substitutability between routine workers and the joint combination of non-routine
workers and ICT capital.

proxy of sorting and segregation effects, and thus of labour market concentration),
namely 6. I evaluate their contribution both alone and in joint combination: vari-
ations in the industry-specific elasticity of substitution parameters, (ps,0s)y,, have
the aim to analyse, to explain and to quantify — absent any changes in price and
quantity of any elements in the industry production function in eq. (9) — the im-
portance of structural transformations among industries. Changes in 6 quantify the
pattern in the degree of labour market concentration: since industries face not per-
fectly elastic labour supplies, as the labour market becomes more concentrated it
must be the case that labour supplies become more industry specific under stronger
sorting-segregation tuple.

4.1. SELECTING PARAMETERS

To give a sense of these choices in Table 8 I present evidence of the relevance of
the changes occurred in the two elasticities of substitution (p,o) considering two
separate time windows, 2003-2012 and 2013-2022, that split the whole sample in two
bins of equal size. It turns out that top industries experience a marked variation in
only one elasticity: on the one hand complementarity between ICT capital and non-
routine workers has decreased; on the other hand, in compensation of such drop, this
group experiences a pale shift in the “gross substitution” between routine and non-
routine workers. Different case is for the middle group, where non-routine workers
have increased their degree of complementarity with ICT capital, and a very pale
negative shift in the complementarity (higher gross substitutability) between routine
workers and their “tech counterpart”. Finally, bottom group has undergone a drop
in the substitutability among job types, together with a marked drop in its degree of
complementarity between ICT capital and non-routines.

Intuition behind substantial variations in labour market concentration can be
gained from Figure 4, which computes the Herfindahl-Hirschman Index (HHI) for
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FIGURE 4: LABOUR MARKET CONCENTRATION AS A STRUCTURAL CHANGE

Note: the figure represents the evolution in labour market concentration as measured by the Herfindahl-Hirschman Index
(HHI) — on the y-axis — by routine and non-routine (red and green lines, respectively) job tasks, and by total employment
(yellow line). Series are normalized relative to their initial value in 2003, set to 1. Source: BLS and own calculations.

labour market concentration for both worker types and aggregate employment.®3

Since 0 is computed via the MSM, its estimate is the mean value through the consid-
ered years thus allowing to interpret its level not only as a cross-sectional indicator,
but also as a signal of the occurred variation in sorting and segregation (similar
workers are employed in the same industry under stronger effects). By consider-
ing two separated periods of the sample (2003-2012 and 2013-2022), a clear divi-
sion emerges: a steady increase in labour market concentration characterizes the
first half, while a smoothing behaviour materializes later on (green line), and this
is due to the drop in concentration of non-routine workers (blue line). More, the
re-estimation of 6 over both half of the sample reports values of 6,350, = 7.26 and
Or013202 = 7.79 meaning that, in the lights of Figure 4, the variation occurred in
industry-level concentration of workers has been higher in the first half of the sam-
ple, and lower in the later period; still, estimated labour market concentration is size-
able, with an increased concentration (but flat or moderate in the last decade) over
time.’* Interpretation of the figure suggests that, to keep track of economy-wide
labour market concentration it is sufficient to look at the routine task concentration;
estimated via the top/bottom industry wage ratio for routine jobs, such observation
relates to the level of 0, in confirmation of the strategy I design to compute its cali-
brated value. Hence, heterogeneous changes in (p, ) pair coupled with variations in
0 can be interpreted as capturing the reallocation of capital and worker types across

53 Further details are provided in Appendix C.

54 Remember that 6 > 1: as it approaches to 1, labour market concentration decreases. Hence, the two
estimates of 0 are consistent both with the theory and the figure: the concentration of workers at industry
level is higher in the second half (65013.2022) than in the first one (6203-2012)-
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industry alongside the structural increase in labour market concentration of routine
and non-routine tasks: if considered altogether, such combination would account for
a substantial margin for uneven industry wage premiums.

Key is to understand the role of differential adoption of structural changes. As
a preview of the results, when considering industry-heterogeneous patterns in both
elasticities: firstly, changes in both p and ¢ explain a marked fraction of real log-wage
variance but, secondly, it is the joint change in the two elasticities that explains ma-
jor shares of wage inequality for the U.S. economy. Moreover, given these patterns,
major labour market concentration in terms of stronger sorting and segregation ef-
fects would worsen the level of wage inequality.

4.2. INSPECTING THE MECHANISM: MODEL RE-CALIBRATION

Central exercise is to re-estimate all the model parameters for two equal portions
of the sample (2003-2012 and 2013-2022), and compute the differences implied by
changing only one or more parameters at a time; new values are reported in Table
C.6. This analysis is well suited to link the data-driven shifts in structural transfor-
mations across U.S. industries with empirically-observed trends in wage inequality
as predicted by the model. Main scope is to quantify what would have been the
total variance if only a specific parameter changes from period 1 to period 2, keep-
ing the remaining parameters fixed at their initial level. In other words, given the
re-estimated parameters, consider the following model

Avar (w(s) —W) = f(CIDS (x,71),0s(p,71), Ps (x, T2) ‘ A©q (p%p’a’e}, —pfl» (Model A)

where the change in between-industry wage variance is a function of the input
factor series in both periods, ®; (x,71) and P, (x, 7o), the whole set of parameters
in period 1, O;(p, 71), and the set of parameters when considering some of them in
the second period keeping fixed the others, ©; (p,, —pr, ), for any industry-s. Prac-
tically, given the change in capital and labour types, I estimate the wage levels and
variances with two set of parameters: (i) full set related to period 1, and (ii) full set
related to period 1 with one (or a combination) related to its period 2 level; parame-
ters are those selected in Subsection 4.1.

Results are reported in Table 9. Second column shows the between-industry vari-
ance of second period (7;) in both the data and the model specified in column 1. To
evaluate the role of each structural parameter, column 3 reports the model-implied
wage variance by imposing all the parameters to be in period 1, but the parameter(s)
of interest being at period 2 level. The predictions arising from this estimation, con-
sidering industry-heterogeneous pattern in the substitutability of factors of produc-
tion, suggest that, to account for trends in U.S. between-industry wage inequality, a
pivotal role is played by p and ¢ jointly, and thus by observed changes in the sub-
stitution elasticities between ICT capital, routine and non-routine workers. In fact,
unique changes in p would have determined a substantial level of between-industry
wage variance (.88), while larger impact is devoted to changes in the parameter gov-
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TABLE 9: MODEL COUNTERFACTUAL, CHANGE

A model | A m(@(x, 7),0 = {pr, _Pn})

industry wages  var(w)-, level share, model share, data

DATA 1.18

MODEL 1.09
Ao 2.37 2.18 1.99
Ap .88 .81 .74
Ao, p) 112 1.03 94
AO 1.34 1.23 1.13
A(c,p,0) 1.16 1.07 98

Quantification of Model A. Model implied between-industry real log-wage variance changes between two time spans dif-
ferently calibrated, and changes also according to variations in some parameters; values are referred to variance levels
considering bottom, middle, and top industries. Column 2 shows the level in the second period of the between-industry
variance both in the data and in the period-two fully calibrated model. For the model specified in column 1: column 3
represents the variance level in the second period as implied by the change in the parameter(s), while column 4 computes
the second period variance share of the period-two full model which is accounted by the change in a specified parameter,

m [Cb(x,‘rz) ‘ @(}7,Tz),®(—p,ﬁ)} . . . . .
, where ®(x, 1y) identifies the series in the second period, and © the set of parameters where some of

m [CI)(X,TZ) ‘ ®(p,T2)]
them, (p, 72), are taken in the second period, while (—p, 11) reflects the set of all the parameters in the first period but those
considered in the second period. Column 5 reports the fraction of variance explained by changes in parameter(s) in the
observed data-driven variance.

erning the routine-non routine labour force substitution: alone, industry-specific
changes in ¢ would have rather implied a massive level of wage dispersion (2.37).
Given these opposite-in-size effects, and considering jointly the shifts in both param-
eters, then the implied between-industry real log-wage variance (1.12) would have
been closer to that implied by the full calibration model (1.09) and by the data (1.18).

Column 5 quantifies the importance of each parameter in explaining the observed
trend in U.S. wage inequality since it shows the share of the model real log-wage
variance implied by shift in parameter(s) in the empirical data variance. While
unique changes in p account for 74%, heterogeneous shifts in both elasticities are
able to capture the 94% of the data-implied level of between-industry wage vari-
ance (103% of the full calibrated model for the second period, 2013-2022). These
findings suggest that major wage differentials among industries are due to different
and industry-heterogeneous degrees of substitution between routine and non-routine
workers, rather than the degree of substitution between ICT capital and non-routine
labour force; the combination of such variations in these two parameters accounts
for a major share of the observed trend in wage inequality.

Above conclusions directly bridge to the interpretation of changes in 6, whose
value shifts from 63000 = 7.26 t0 130000 = 7.79; alone, stronger workers’ concen-
tration measured by such positive change would mostly surge real log-wage vari-
ance (1.34) but, when such sorting and segregation effects (due to a reduction in
households’ productivity dispersion) are accompanied by an heterogeneous pattern
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of the elasticities of substitution as suggested by Table 8, its effect would slightly
sharpen the explained economy-wide between-industry wage inequality (accounted
level of 1.16 in the model); put it differently, given heterogeneous changes in sub-
stitutability parameters’ degrees, a highly concentrated labour market induced by
stronger worker types’ sorting and segregation factors increases overall inequality
in labour income. Considering only variations in industry-specific structural charac-
teristics (through simultaneous changes in both elasticities of substitution) alongside
to those in labour market resilience (as measured by sorting and segregation effects),
the model predicts that the joint component A(c,p,6) is able to explain 98% of the
data-implied U.S. between-industry variance of real log-wages.

Sensitivity.— So far the analysis has considered just variations in the three core
parameters (pS,O'S,Q)vS of the model while switching off occurred variations in the
values of production function parameters (as, ys, AS)VS which, as explained in Subsec-
tion 3.2, may underlies the potential role of automation. All the above results are
further reinforced by the reverse exercise, in which I conjecture what would have
been the total variance if only a specific parameter is fixed at its initial level, letting
the remaining parameters free to change from period 1 to period 2, that is

Avar (w(s) —w) = f(@s (x,71),0s(p, 1), Ps (¥, 2) \ A©q (PTZ,—P%)'U'Q})) (Model B)

and results are presented in Table C.8:°® absent any change in ¢ — thus giving a
first order role to the combination of changes in p and 6 with that of the weights and
income shares in the production function, heterogeneous across industries —, total
accounted variance would have been closer to the actual in the data explaining 79%
of the occurred trend, while fixing the combination of the two elasticities (AG)‘(W)),
total variance explained would have been notably higher (1.31) to the actual vari-
ance in both data and model; same result is found when fixing all the parameters of
interest (thus considering only the role played by income shares, «, 4 and A), namely
(0,p,0). Finally, keeping constant the productivity dispersion parameter (6), thus
letting the two elasticities and the other industry-specific parameters to vary, most
of the total variance would have been explained, in line with the stylized facts pre-
sented in Section 1: considering only industry-heterogeneous changes in both the
substitution-elasticities and the weighting parameters, a share of 88% of the data-
implied U.S. between-industry wage variance can be explained (96% in the model).

Investigations in this section outline an important feature of the U.S. wage struc-
ture: observed structural differences among industries account for a sizeable frac-
tion of wage inequality. Bridging the model to the data, most of the inequality is
accounted by trends in industry-heterogeneous differentials in elasticities of substi-
tution among capital and worker types (94%, Table 9), also taken in combination to

55 Such counterfactual analysis, differently from that in Table 9, allows to consider also changes in the pro-
duction function weights, which are industry-specific too. In other words, this exercise considers both changes
in structural (ps,05)y, and in production (s, is, As)y, parameters, besides the usual change in households’
productivity dispersion measured by shifts in 6.
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different weights of factor inputs in production (88%, Table C.8). Considering these
differences across industries, the rise in labour market concentration in terms of
stronger workers’ complementarities (sorting and segregation) is an amplifier of U.S.
wage inequality in the last two decades, explaining 98% of the total between-industry
real log-wage variance (Table 9).%¢

The role of labour market power.— Model specification allows also to inspect
whether the assumption of monopsony power by the part of firms is a dimension
worth to analyse in order to account for between-industry wage inequality. Labour
market failures due to employers market power in wage-setting decision are rec-
ognized by the on-going debate (e.g., Prager and Schmitt 2021, Dodini et al. 2021),
while Card, Rothstein, et al. 2024a argue that, in several manufacturing industries,
variations in industry wage premiums are not positively correlated with that of wage
markdowns. In Appendix D I replicate the exercises so far when considering a ver-
sion of the model in which monopolistically competitive firms (/,s) do exploit monop-
sonistic power thus choosing its optimal wage level. In terms of eq. (10), monop-
sonistic power results in displaying a (average) wage markdown over the marginal

revenue product of labour of
6

T 1+0

which is increasing function of the labour supply elasticity 60 (e.g., Card, Cardoso,
Heining, et al. 2018 and Berger et al. 2022). Referring to Figure 2, as 6 — 1 house-
holds’ productivities are more dispersed and the labour supply elasticity to changes

MO € (0,1)

in relative wages is higher, so that monopsony power decreases as well as the wage
markdown. Results for A6 and A(c,p,0) under monopsony are mostly unchanged
compared to the main analysis both in the direction and in the magnitude, thus
suggesting that changes in between-industry real wage inequality are not a direct
consequence of variations in wage markdown.

4.3. SKILL-BIASED TECHNOLOGICAL CHANGE

Finally, I turn to evaluate the systematic effect of Skill-Biased Technological Change
(SBTC). In fact, a final dimension that can be inspected through the model is how
and whether changes in capital and labour series at a time are affecting between-
industry wage inequality when shutting down the evolution in production technol-
ogy parameters («,u, A, p,0) and labour market concentration (0). Given the re-
estimation procedure, consider the following model

Avar (w(s) - w) = f((IDs (x,11), ADs (X5, —x7) | Os (p, 1) ) (Model C)

where the change in between-industry wage variance is a function of industry-

56 Qutcomes are almost unaffected — in the direction but not in the magnitude — when considering between-
industry wage dispersion for routine (Table C.9) and non-routine (Table C.10) tasks separately: changes in
(p, o) have an averaged impact for routine workers, while sorting and segregation effects are more pronounced
for non-routines. Results are shown in Appendix C.
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specific factor series, ®; (x,71), and parameters, Os(p, 71), taken in period 1, while
considering one (or a combination of) series at the second period level while keeping
fixed the others, ®; (x,, —xy ) to first period.

Table C.11 reports the outcome, and it has to be interpreted like in the previous
section, where column (2) shows the between-industry variance of second period (1)
in both the data and the model while, for the changes in each series considered in
the first column: columns (3), (4), and (5) report the implied wage-variance level,
the variance share of that in the “all-series” model, and the explained variance of
the data, respectively. Routine workers differentials alone inflate wage inequality
(2.62) and, to a little extent, it does also ICT capital series (1.69). Combinations
of both labour types, also together with ICT capital explains more than the actual
real log-wage variance (112% and 113%). Compared to Table 9, reported “changing-
series” shares of data-driven wage variance are substantially higher than that con-
sidering also changes in substitution elasticities and sorting and segregation effects,
meaning that Skill-Biased Technological Change (SBTC) overestimates the actual
between-industry real wage inequality. In this regard, changing in the series are
necessary but not sufficient to fully determine the (change in) magnitude of real log-
wage variance: central considerations to consider within this approach are not just
the systematic changes in capital and labour quantities along technological change,
but key are also the changes occurred in structural transformation parameter, un-
even across industries. This will become clearer in the next section, where I am
going to recompute the between-industry wage inequality completely turning off the
channel of heterogeneous structural parameters among industries, thus considering
just the occurred variations in factors of production.

5. FACTOR QUANTITIES AND PRODUCTIVITY CHANGES

A concluding step that allows to close the analysis to disentangle the main channels
of the U.S. between-industry wage inequality is to consider to which extent diver-
gences in the inputs of production are important when imposing industries to have
the same structural parameters. Given 71 being the initial year (2003) of the sample,

var (w(s) - W) = f<A<I>S (x), @5 (—x,7) | O—ys (p) ) (Model D)

Stated differently, I conjecture what would have been the total real log-wage vari-
ance across industries if only a specific series — capital and labour types, or a com-
bination — changes over time, A®; (x), keeping the remaining series fixed at their
initial level, ®s (—x, 79), and imposing economy-wide values for calibrated parame-
ters, ®_y; (p). In the exercise presented below, these are the mean value for both
each parameter estimated through MSM approach (x = .503, A =, 458, and 0 = 11.3),
and for physical capital’s income share (¢« = .324), with the price markup parameter
fixed to € = 6. Considering all the industries not divided in group, elasticities of
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TABLE 10: MODEL VS. DATA COUNTERFACTUAL, SERIES AND MEAN PARAMETERS

model | A ®(x)

A(tfp)
data Al(rt) Al(nrt) A(L) Ak(ict) A(tech) mean baseline

WAGES, VARIANCE

routine 2.285 .35 .16 22 24 .15 25 22
non-routine 2.314 32 12 17 23 13 21 23
industry 2.299 .33 .14 .19 23 14 23 23

Quantification of Model D. Changes in variances in real log-wages in the model induced by variations in one or more series, keeping
fixed the others, and imposing the mean parameters to be homogeneous across industries. A ({) refers to joint variations in routine
and non-routine series, A (tech) is associated to simultaneous changes in both ICT capital and non-routine workers, while changes
in estimated industry-specific Hicks-neutral exogenous total factor productivity (TFP), given eq. (14), are captured by A (tfp); TFP
series are taken under the same (mean) parameters’ values, or given the baseline calibration (Table 3.2). In all the columns, the
variation is computed throughout the period-by-period percentage differential thus identifying overall changes in empirical trends
implied both by the data and the model; same values differ in terms of decimals.

substitutions have been estimated again, and set to p = .333 and o = .595.57

Table 10 reports a model-decomposition of Table 7 as proposed in Model D. A
discussion of this counterfactual exercise reveals that: shifts in just industry-specific
routine workers account for the major variation compared to other series, and little is
the magnitude of non-routine workers’ dynamics, A¢(nrt), even when combined with
shifts in ICT capital, A(tech). Substantial seems to be the impact of divergent ICT
capital across industries, but still meaningless in terms of observed real log- wage
variance. Overall, it can be stated that industry-specific differentials in the adoption
of ICT capital and in their employment dynamics for both routine and non-routine
job tasks are able to quantitatively account for 6% to 15% of the observed real wage
inequality either across industries or across tasks.?®

Productivity differentials.— So far all the analysis has been centred on ex-
cluding total factor productivity (TFP), while last two columns report the industry-
specific changes in productivity; such patterns cannot be directly observed in the
data, but sectoral series can be recovered from the theoretical model. Start by noting
that Proposition 1 allows to write the industry-level counterpart of eq. (9) as

y(s) = z(s)f(k(phy,s),k(z'ct,s),E(rt,s),f(nrt,s) | ®5>

where z(s) is an exogenous measure of product-augmenting Hicks-neutral TFP

57 Values computed when drawing Figure C.1. Standard errors are respectively equal to Std.Err. (o) =02 and
Std.Err.(,) = .03, with 95% confidence bands of [.301, .366] ,) and [.545,.645],. Note that Table 10’s results hold
also when re-estimating all the parameters for the whole economy (see Table C.13), thus not considering the
mean values of the calibration performed in Table 5.

58 An analogous exercise, weighting each capital and labour series considering heterogeneous differences in
structural parameters (Table C.7), reaches almost these results: routines and ICT capital series appear to be
slightly prevalent in enlarging the variance share of about 5-20%. However, even when all the series are fixed
over time, the model barely overestimate the variance level, meaning that structural parameters appear to be
more relevant in addressing the level of wage inequality both across industries and job tasks.
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FIGURE 5: ESTIMATED PRODUCTIVITIES UNDER MEAN PARAMETERS

Note: the figure shows the estimated Hicks-neutral exogenous total factor productivity (TFP) measures estimated from the
model. Panel 5a plots the series given a calibration where all the parameters are evenly set at the same mean values for all
the industry-groups, while Panel 5b shows the difference between such series and the estimated TFP measures using the
baseline calibration reported in Table 5. Series are scaled to be in the same range for graphical comparison.

for industry-s, k(j,s) and ¢(a,s), for j = {phy,ict} and a = {rt,nrt}, are its quantities
of capital and labour types, and ®; identifies the vector of calibrated and estimated
parameters.’® Using industry-by-industry data on the annual, seasonally adjusted
value added extracted from BEA to measure output, y(s), it is possible to recover the

year-by-year series for sectoral productivity from

log(zt(s)> = log(yt(s)> —log [ft (k(phy,s),k(ict,s),é(rt,s),@(nrt,s) ] @s)}
(14)

= log(yt(s)> — log(kt(phy,s)) — (1 —ay) log(vf(s)>

where v;(s) comprises the relation among ICT capital, routine and non-routine
workers along the parameters governing their associated weights, the different elas-
ticities of substitution, and the degree of labour market concentration.

Estimated series for s = {bot,mid,top} are in Figure 5. Panel 5a displays the
estimated series under the same industry-level calibrated parameters, while Panel
5b computes the differences between these TFP measures and that estimated using
the baseline calibration of Table 5. In both estimations, and evenly among indus-
tries, TFP is increasing over time but a marked drop in 2008 (Great Financial crisis)
and 2020 (COVID-19 crisis); little discrepancies are found among the two TFP mea-

59 Neutrality in the sense of Hicks (1932) implies that the marginal rate of substitution between capital and
labour inputs is not altered, and hence including productivity does not pose threads to the parameters’ identi-
fication strategy of Subsection 3.2, which may be confounded by other forms of neutrality (labour-augmenting

Harrod-neutrality, or capital-augmenting Solow-neutrality).
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sures, more marked for top and middle industries. On the right border of Table 10 is
reported the magnitude of shifting industry-specific productivity measures for both
types of calibration: as in the case of factor quantities, isolated changes in TFP are
meaningless in order to address the real log-wage variance in the data.

Overall, the purpose of this section is to unearth the role of industry-specific pat-
terns in capital, labour, and productivity differentials on wage inequality when all
the residual differences in terms of parameters are turned off. Strikingly, single and
combined shifts in the series are able to address between 6% and 15% of the variance
level in the data, thus reinforcing the conclusions of Section 4 which point towards a
massive involvement of heterogeneous (cross-sectional and trend levels) differences
in structural parameters to address the observed between-industry wage inequality.

CONCLUSIONS

Changes in wage inequality for the U.S. economy observed over the last decades have
been considerable and brought to a renewed attention on their origins. The litera-
ture has started to identify the rise in differences across industries as the dominant
driver of the increasing inequality. Rationale relies upon the role of structural trans-
formations as a principal mechanism to interpret observed changes in U.S. labour
market and in its wage structure. I conceptualize this framework in a general equi-
librium model, exhibit heterogeneous degrees of substitutability between capital and
labour types, and the economy is characterised by certain degree of labour market
concentration which, in turn, gives birth to stronger sorting and segregation effects,
a consequence of imperfect flexibility of labour supply.

A structural estimation of the model successfully reproduces the wage structure
of the U.S. economy, capturing the empirical wage inequality across industries. It is
demonstrated that such inequality is primarily attributable to structural differences
among industries: specifically, trend-heterogeneous differentials in the elasticity of
substitution between routine and non-routine workers emerge as a principal deter-
minant of between-industry wage variance; conversely, the effect of varying substi-
tutability between ICT capital and non-routine workers is comparatively limited.
Combined shifts are capable to capture 94% of the real log-wage variance observed
in the data. Furthermore, when neutralising the channel of industry-differentials
in trends of structural parameters, only a modest fraction (ranging from 6% to 15%)
of observed real wage variance remains explicable through imposed variations in
capital and/or labour inputs, even when incorporating an estimated measure of to-
tal factor productivity (TFP) at the sectoral level. These findings strongly suggest
that differences in structural parameters across industries serve as the predominant
force governing the observed trend of wage inequality.

Moreover, the model also yields significant labour market implications after the
inclusion of trends in the link between workers’ sorting and segregation effects and
wage dispersion. An increase in labour market concentration exerts only a marginal
effect on wage inequality when the model accounts for trends in structural trans-

42



formations across industries. More broadly, variations in both substitution elastic-
ities and labour market concentration jointly explain nearly 98% of the observed
wage inequality attributable to industry-specific factors. In addition, when industry-
heterogeneous shifts in both elasticities of substitution are considered alongside that
of the associated weights of capital and labour inputs in production, 88% of the data-
implied between-industry wage variance is accounted for. These conclusions remain
robust even when the analysis is disaggregated to examine wage inequality sepa-
rately for routine and non-routine workers.

Taking a general perspective, the model detects a sizeable role for the reallocation
of economic activity — specifically, shifts in the substitutability of capital and labour
— in shaping real wage dispersion across industries. Besides smaller effects of the
substitution across capital and workers types, the secular trend in wage inequality
in the United States is primarily driven up by uneven, industry-level shifts in the
substitutability between routine and non-routine workers. A possible interpretation
of these findings might be that they suggest how between-industry wage inequality is
largely determined by factors pertaining to the labour side of the production process.

This outcome follows directly from two fundamental elements of production: (i)
structural technology parameters, and (ii) composition of capital and labour types
within industries. While both aspects remain essential to a comprehensive under-
standing of wage inequality, I contend that the principal forces underlying its per-
sistent rise are related to an “indirect” effect of SBTC — specifically, the degree of
substitutability across job tasks and the evolution of industry-level employment com-
position. Further explanations on what determines structural differences in techno-
logical parameters are called for.
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APPENDIX

(Outline) In this appendix I report all the material complementary to the main text;
it is made of additional tables and figures, and of discussions on further analytical re-
sults. Section A complements and enriches the exposition of the empirical findings in
Section 1; Section B derives all the salient elements of the structural general equilib-
rium model outlined in Section 2, while Section C consolidates and further discusses
the calibration strategy and the counterfactual analysis of the model of Sections 3-4.
A replication is in Section D under both monopsony and monopolistically competitive
power of firms.

A. MOTIVATING EVIDENCE: DATA, FIGURES AND TABLES

(Data details) Data are for United States (US). For what concerns data from Bu-
reau of Economic Analysis (BEA), private non-residential capital types are in net
stocks evaluated at current costs by detailed industry dating back from 1925 to 2022."
Gross categories are “total equipment”, “total structures”, and “total intellectual prop-
erty products”, and each contains different types of assets according to their own Na-
tional Income and Product Accounts (NIPA) asset type code; in total there are 96 dif-
ferent asset types. Data are provided for 74 industries at different layers."! Among all
these types of capital assets I am going to classify them accordingly: digital equipment
is made of “Mainframes”, “PCs”, “DASDs”, “Printers”, “Terminals”, “Tape Drives”,
“Storage Devices”, and “System Integrators”; the stock of intangible capital coincides
with that of “Total Intellectual Property Products” (IPP);'"N while physical (or non-
ICT) capital is the sum of all the remaining asset types."Y I extract also annual data
on (seasonally adjusted) value added, wages and salaries, and of persons engaged in
production (effective workforce) for each industry. To complement these data, annual
(seasonally adjusted) Consumer Pirce Index (CPI) for all items (indexed at 2015 =
100) is taken from Federal Reserve Economic Data (FRED) database.

Regarding the data extracted from Bureau of Labor Statistics (BLS), information
are available for a total of more than 80 industries at 3-digit U.S. 2017 NAICS level

I Starting year is 1998 so that industries are classified with the latest available system, the U.S. 2017
NAICS; before, classification follows the U.S. Standard Industrial Classification (SIC) system. Assets’ value is
expressed in millions of U.S. dollars, and last update was in November 3, 2023.

II Classified according the BEA industry code system. Most are classified at 3-digit U.S. 2017 NAICS level

(some 3-digit industries may fall in the same BEA code), four at 2-digit (“construction”, “management of com-

panies and enterprises”, “educational services”, and “other services, except government”), while five industries
related to finance and insurance are at 4-digit level.

III A recent discussion analyses how the BEA collects data on IPP. Koh et al. (2020) argue that the effects
of IPP capital on the U.S. labour share only emerged since 2013, when the BEA revised its methodology by
re-classifying the notion of capital; now, the capital income comprises the rents arising from IPP investment.
The authors compare the IPP effect on the labour share using both pre- and post-2013 data, finding out a
negative effect of the rise in IPP on the U.S. labour share.

IV Similar classification in Arvai and Mann (2022), as well coherent with Eden and Gaggl (2018).
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starting from 2003.V At workers’ level, each industry displays information on a set of
several occupations classified according to the U.S. Office of Management and Bud-
get’s Standard Occupational Classification (SOC) system, i.e., occupations are cate-
gorized based on the type of job and on required skills, and employees are assigned to
an occupation based on the work they perform and not on their education or training.
For my purposes I classify occupations by considering their “major” group member-
ship:¥' I divide such major occupations in both routine and non-routine tasks. The
latter group considers occupations such as “Management”, “Business and Financial
Operations”, “Computer and Mathematical”, “Architecture and Engineering”, “Life,
Physical, and Social Science”, “Community and Social Service”, “Legal”, “Educa-
tional Training and Library”, and “Arts, Design, Entertainment, Sports, and Media”,

while the left-outside occupations are comprised in the group of routine worker tasks.

TABLE A.1: REGRESSIONS, CAPITAL STOCKS

log(w(s))
(1) (2) (3) (4)
B 134%# 122+ 164 114%+
(3.48) (2.94) (9.05) (3.52)
Bric 052* 049"
(2.00) (2.27)
ﬁkint 057>|<
(2.03)
ﬂkdeq '003
(-26)
:Bki"t X :Bkd”? .009** .009**
(2.99) (2.80)
R? 461 491 287 497

t-statistics in parentheses. * (p<0.05), ** (p<0.01), *** (p<0.001). Analysis at 3/4-digit
U.S. 2017 NAICS industries over 1998-2022 on N = 1650 observations. Fixed Effects
(FE) regressions are of the form y (log (w(s)) | Xit) = Be + BiXis -+ us, with X; represent-
ing the different capital-labour ratios considered. Results are robust when controlling
for the log size of industries, or when taking capital series directly in levels. Variables are
in log format. Constant not reported to save space. Source: BEA and own calculations.

V' The number of industries is variable year by year due to issues of data sampling. Moreover, prior 2003,
these are classified according to the Standard Industrial Classification (SIC) system.

VI This choice arises from the fact that there are missing group definitions for some more detailed occupations.
In fact, the number of occupations in each industry is not fixed: there are from 80 to 180 types of occupations
for each industry, and these are clustered in common 22 major groups.
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FIGURE A.1: CHANGES BY PERCENTILES

Note: each subplot draws the HP-filtered trend in ICT capital ratio (ICT capital stock in physical capital quantity, Panel
A.la), and in task ratio (fraction of non-routine workers of routine ones, Panel A.1b). Series are divided according the growth
in group-specific industry wage (i.e., total Ao, in industry wage per worker). Industries are classified at 3-digit U.S. 2017
NAICS level. Source: BEA, BLS and own calculations.

TABLE A.2: COMBINED REGRESSIONS, PERCENTAGE CHANGES

Alog (w(s))
(1) (2) (3)
Bak 054+ .009
(.002) (.008)
Bae .035* .035%**
(.018) (.007)
Bakx Al 982 919%**
(.649) (.152)
R? .030 021 .037
N 1178 1178 1178

t-statistics in parentheses. * (p<0.05), ** (p<0.01), ***
(p<0.001). Analysis at 3-digit U.S. 2017 NAICS industries
over 2003-2022. Fixed Effects (FE) regressions are of the form
v (Alog (wi(s)) | Xig, Z) = Be + BiXip + 6jZj + us, with X; rep-
resenting the percentage change in both ICT-to-physical capital
and non-routine-over-routine workers ratios, and Z]- being a set
of time-varying controls. Variables are in log format. Constant
not reported to save space. Source: BEA, BLS and own calcula-
tions.
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FIGURE A.2: INDUSTRY CORRELATIONS

Note: each subplot of the figure represents the correlation of overall percentage change in industry-specific real log-wage per
capita with both ICT capital ratio (ICT over non-ICT capital) in Panel A.2a, and task ratio (non-routine over routine workers)
in Panel A.2b. The oblique (dashed-grey) line represents the fitting curve with its associated degree of correlation, while
the horizontal (solid-black) line identifies the mean value of all industries’ overall percentage change in real log-wage per
capita. For a better graphical visualization, the ICT ratio takes constant the initial level of physical capital. Each circle is
referred to a specific industry, and I report the label only for more and less virtuous (top and bottom 10%) industries; circles’
size captures different groups of industries, each expressing the group’s position in the distribution of overall percentage
change in their real log-wage. Plots are referred to 3-digit U.S. 2017 NAICS industries over the period 2003-2022. Source:
BEA, BLS and own calculations.

TABLE A.3: COMBINED REGRESSIONS, LEVELS

log(w(s))
Fe ‘ 25th quantile 50th quantile 75th quantile 100th quantile

B 102%* .084** 102 119%** 171*
(.040) (.029) (.022) (.027) (.074)

B .299%** 269 300%** 328%** 4167
(.078) (.040) (.030) (.037) (.104)

Brxe 031 0297+ 0317+ 034+ 041

(1.89) (.010) (.008) (.009) (.025)

Significance level at * (p<0.05), ** (p<0.01), *** (p<0.001). Standard error in parentheses. Analysis at 3-digit U.S.
2017 NAICS industries in 2003-2022 on N = 1240 observations. The Fixed Effects (FE) regression is of the form
y (log (we(s)) | X, Zj,t) = Bc + BiXis +6; 2 + up, with i = k, L, and Z; being a set of controls, and it has associated
R? = 348 . Analogously, the conditional quantile regressions are then Q. (log (wi(s)) | Xi,w,,Z]-,w,) = BiwXiwt +
0jwZjwt + Uwt, Where w represents each quantile (defined on the independent variable). Variables are all in log format.
Constant not reported to save space, while quantile regressions do not have the constant term. Source: BEA, BLS and
own calculations.
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TABLE A.4: COMBINED REGRESSIONS, STANDARD DEVIATIONS

sd [log(w(s))]

(2) R?
Bsa (k) B B Bsa(r) 1 @
25th quantile 256*** .070*** .008*** A03***
(.054) (.015) (.002) (.010)
50th quantile 21 .057*** .008*** A4047**
(.034) (.009) (.002) (.008)
75th quantile .031 .038*** .008*** A405%**
(.039) (.011) (.002) (.010)
100th quantile -127 .015 .008 A408***
(.112) (.024) (.005) (.021)
Fe 149+ .055*** .008*** A404** 324 793
(.031) (.010) (.002) (.007)

Significance level at * (p<0.05), ** (p<0.01), *** (p<0.001). Standard error in parentheses. Analysis at 3-digit U.S.
2017 NAICS industries in 2003-2022 on N = 1240 observations. The Fixed Effects (FE) regression is of the form
v (log (wi(s)) | Xy, Zjy) = Be+ BiXiy + 6,2 + us, with i = k,{, and Z; being a set of controls. Analogously, the
conditional quantile regressions are then Q. (log (wi(s)) | X;wt, Zj,w,) = BiwXiwt + 0jwZjwt + wt, where w represents
each quantile (defined on the independent variable). Variables are all in log or sd format Constant not reported to save
space, while quantile regressions do not have the constant term. Source: BEA, BLS and own calculations.
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(Group decomposition) Total change in wage inequality can be written also as

Az;gr(wt(s) —wt)/: (%%)) [Aﬁr(wt(s €g) _wt@)],

-~

total, wages within-group, wages

—%%@w(a ~Tutg) ) [ (o) ~ ol )

NV
between-groups, employment

+ 1 s (o) - wils) )| [s a4 - T )|

8

- (A1)

NV
between-groups, interaction

Py <£og(og)> [Aﬁr(wt(s)—wt (Q))]

(. J/

within-other groups, wages

+ ; [A (%) ﬁr(wt(g) —wt)]

s

-~

between groups, wages

-~

residual

where industries are partitioned in § € G groups, and variances are employment-
weighted. Subscript t = 0 indicates the initial level (starting year of the sample).
Total change in variance can be decomposed in several components: (i) rise in vari-
ance for a particular group g; (ii) reallocation of employment across groups, keeping
constant the variance of each group at its base level; (iii) cross-changes of wages and
employment; (iv) rising variance within all other groups but g; and (v) rising variance
between groups. Quantification of each component is in Table A.5; this decomposition
is borrowed from Kleinmann (2023).
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TABLE A.5: DECOMPOSITION OF THE RISE IN WAGE INEQUALITY

industry group g
(1) (2) 3 4 (5)
share of the increase, wage variance tails middle services manuf. other
rising variance within the group 79% 32% 58%  11% 27%
employment reallocation across groups 34% 34% 17%  51% 10%
comovement (variance, employment) 7% 7% 3% 4% 5%
residual -20% 27% 22%  -34% 58%
total change across all industries ‘ 100%  100% 100% 100%  100%

Estimates of each component in eq. (A.1) for 3-digit U.S. 2017 NAICS industries between 2003 and 2022 related to log (w(s)).
Operator A in the equation is x; — x;_1, and not a percentage change. The first row shows the share of total increase in
variance due to rising variance in the group of industries; the second row shows the share due to changes in employment
between that group and the other industries in the sample (employment reallocation), holding constant the change in variance
in each group; the third row shows the share that is due to the cross-product of rising variance and rising employment share;
the fourth row is so that the sum for each column is 100%. “tails” and “middle” are referred to overall percentage changes
distribution in industry real wage per capita; “manuf.” stands for manufacturing industries, while “other” does not consider
services and manufacturing industries. Source: BEA and own calculations.
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FIGURE A.3: LABOUR SHARES PATTERN

Note: the figure shows the fitted values and the associated linear trend for the labour share of both routine (Panel A.3a) and
non-routine (Panel A.3b) workers. The fitted values are extracted from a Fixed Effects (FE) regression for both the labour
share measures with year and industry fixed effects. Source: BLS and own calculations.
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TABLE A.6: INDUSTRY CONTRIBUTION TO WAGE VARIANCE GROWTH

contribution
industry share (%) group
Administrative and Support Services 0.01 top
Agriculture 0.12 top
Ambulatory Health Care Services 0.23 bottom
Amusement, Gambling, and Recreation industries 0.62 bottom
Chemical Manufacturing -0.26 bottom
Computer and Electronic Product Manufacturing 0.94 top
Fabricated Metal Product Manufacturing 0.14 bottom
Federal Reserve banks, Credit Intermediation, 0.47 top
and related activities '
Food Services and Drinking Places 2.36 top
Food and Beverage Stores 1.34 bottom
Food and Beverage and Tobacco Products 0.39 bottom
Funds, Trusts, and Other Financial Vehicles 0.10 top
General Merchandise Stores 1.29 bottom
Information and Data Processing Services 5.90 top
Machinery Manufacturing -0.02 bottom
Management of Companies and Enterprises 2.71 top
Oil and Gas Extraction 0.26 top
Other Services, except government 0.43 top
Other Transportation and Support Activities 0.67 bottom
Paper Manufacturing -0.02 bottom
Performing Arts, Spectator Sports, Museums, 0.02 top
and related activities ’
Printing and Related Support Activities 0.08 bottom
Professional, Scientific, and Technical Services 11.7 bottom
Publishing industries (including software) 2.23 top
Rail Transportation -0.10 bottom
Real Estate -0.04 top
Rental and Leasing Services and Lessors of Intangible Assets -0.08 top
Securities, Commodity Contracts, 3.59 top
and Other Financial Investments and Related Activities '
Transportation Equipment Manufacturing 1.17 bottom
Warehousing and Storage 0.86 bottom

Contribution to between-industry wage variance growth of industries comprised in top and bottom (in terms of overall
growth in real log-wage per capita, as reported by Table 1) groups over the period 2003-2022. Variance contribution follows
the definition proposed in eq. (1). Industries are at 3-digit U.S. 2017 NAICS level. Source: BEA and own calculations.
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B. MODEL DERIVATION

(Household inter-temporal problem) The household utility problem in eq. (5)
can be rewritten inter-temporally, future-discounted by factor B, as

. max Uj(a,s) =) |Blog (Ci) | + ) |log Bys(a,s)| + o (a,s)
T e e UG R MR
s.t. Cl4 Ii(phy) + Li(ict) + bl — (1 +1) bl =

= wh,t(a,s)%(a,s) + R¢(phy) kf;(phy) + Ry (ict) ki(ict) + D};

. ) Iz' h .
with ki 4 (phy) = % + (1 - 5phy) ki(phy)
t

o Ii (ict »
and ki 4 (ict) = t(glc ) + (1 — djt) ki (ict)
t

where the investment schedule comprises both assets, bi (which are in zero net sup-
ply, thus exchanged only across households), and physical and ICT capital holdings,
kf; (j), with j = {phy,ict}. Household-specific productivity when working as type-a for
firm-h in industry-s is denoted with g (a,s). Each household inelastically supplies
one unit of work, so that EZ(a,s) = 1. The firm benefit of household-a is defined to be
B (a,s) = [gni(a,s)] "¢ where gnt(a,s) reflects the relative share (i.e., the task ratio)
of a given task, which is negatively scaled by the elasticity parameter ¢, while D; is
the share of firms’ profits that goes to household-i. Capital stock of household-i depre-
ciates at a rate J;) and accumulates over time by a law of motion which is function
of Cit, namely the quantity of ICT capital relative to that of non-ICT capital, that
enters negatively in new capital investment, If (j), under the idea that as the stock of
capital owned by household-i becomes more sophisticated (larger ICT relative to non-
ICT capital when Cﬁ increases), it is required an higher rate of capital investment to
keep constant the future stock of given capital type. Modelling the dynamics of capital
in this way serves only to derive analytical solutions for the equations (12) and (13)
estimating the pair (p,0) of Section 3.

Utility maximization implies the Lagrangian function to be
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=Y B [logC%} + ; [logBhlt(a,s)} + o'(a,s) +

Ch by, {kt+1 }v] t

- Z [Ct + I; (phy) + I} (ict) +
7

+ by — (1 +711) b, — wy(a,s) +

— Ri(phy) ki(phy) — Ri(ict) ki(ict) - D}
with ' being the penalty multiplier. Optimality conditions are in order

C; p ( Vt+1) C;H

Ri=(1+r41) 80— (1=9)1

The first is the usual Euler condition, which displays future path of consumption.
The second implies that, aggregating across households, the path on interest rates
on capital types, Ri(phy) = Re(ict) = Ry, is linked to the path of aggregate relative
quantity of ICT capital, {; = [\ di, when Spny = dict = ;' in other words, given
the constancy of both the discount factor and the capital depreciation rate(s), changes
across states of the capital rental rate are determined by changes in the relative quan-
tities across capital types. In the spirit of Karabarbounis and Neiman (2014), eq. (6)
determines that investing in capital types is profitable as long as the marginal benefit
of investment (the capital rental rate) is at least lower than its marginal cost (interest
rate, r+ and depreciation rate, ).

O

(Labour supply derivation) The probability of worker-a choosing firm-h = 1 in
industry-h = 1 can be written as

(771 (a,1) = ) <= P(a,1)  for notation purposes, abstract from firm subscript

P(a,1) = Pr [w(a,l)B(a,l)pi(a,l) > w(a,s)B(a,s)ggi(a,s)}, Vs # 1

w(aTB(a,:)pi(a'l) > pi(a,s)] , Vs #1

I Alternatively, the common depreciation rate might be a weighted average of all the capital-types’ depreci-
ation rates.
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For s € 2, 5], the partial derivative of P(a, 1) with respect to ¢'(a,1) is

i w(a,1)B(a,1) ; i
{p“”%ﬂﬁﬁaﬁpmn“”a@ﬁwmap“”}

so that P(a,1) can be re-written as
P(a,1) = Fpi(a/1)<pi(a,1), wp'(a,1), ..., (xspi(a,l)), V' (a,s)

= /Fpi(all)<pi(a,1), a0’ (a,1), ..., aspi(a,l))dpi(a,l)

w(a1)B(a,1)
w(a,s)B(a,s)
variate Frechét-type cumulative distribution,

for ag = . Now, recall that the parameter ¢'(a,s) is drawn from a multi-

—6
E@aﬁmnwmemwwmeM£o=wpkz(4mm@w)]
S
which becomes, in this framework (i.e., not considering firm’s notation),

F(alpi(u,l),...,wspi(a,s),...,agpi(a,5)> = exp _les—e Epi(a,s)_gl
S S

= exp _— ; (acs pi(a,s)) _9]

Taking its derivative with respect to ¢'(a,s) turns to write that
Foitan) (pi(a,l), ap'(a,1), ..., mspi(a,l)) = —(—0) p'(a,s) " texp [E@i(a,s)_e}
with & = Y, a;%. Evaluating the integral in P(a,1) yields to

P(a,1) = /9 ©'(a,s) 71 exp [E@i(a,s)_g] dp'(a,s)
AV . -~ o
B

By multiplying and dividing by « (so that A can be integrated with B), one gets
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g/()pi(a,s)_e_lexp [&pi(a,s)_e} dg'(a,s)

- %/aepi(a,s)‘f"lexp @' (a,5)7°] dg'(a,5)
1
I

/dF(pi(a,l),. . .,pi(a,s),...,pi(a,5)>

By recalling that ag = %, it is possible to obtain that, Vs # 1,

—~=

<w(a,1)8(a,1))9
(ZS w(a, s)B(a,s))e

P(a,1) =

where, including firm’s subscript-h, it becomes

(wl(a,l)Bl(a,l))e

Pl(a,l) = ]
(S wi(a,)By(a,))

Taking in general notation, Yh € [1, H] and Vs € [1,S], it can be written as

0
wy(a,s)By(a,s)
Ph(ﬂ,s) = ( ! ! ) ,  with Bh(afs) = [gh(als)]_g

(Lhewn(as)By(as))”

which denotes the fraction of type-a households choosing to work in firm-h, industry-
sasineq. (7).

To interpret the role of 0 — the shape parameter of the Frechét distribution —, Fig-
ure B.1 plots the distribution of productivities under different values of 0, interpreted
as being the degree of dispersion of households-specific efficiencies in working in firm-
h in industry-s. Basically, the larger is the value of 0 the lower is the variability of
the productivity distribution (i.e., the lower is the dispersion of households’ productiv-
ities), thus the higher is the degree of labour market concentration of workers across
firms and industries.

Moreover, as explained in the main text to interpret eq. (7), “the number of workers
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FIGURE B.1: VARIABILITY AND THE SHAPE PARAMETER

Note: the plot represents how the distribution of an arbitrary variable (e.g., productivity) changes along different values
of the shape parameter, keeping unchanged the scale parameter; lower shape parameter results in major variability, as in
Figure 2.

of a given task-a willing to be employed in a certain firm-industry pair is determined
by different optimal wage levels by firms in industries (wage premium), jointly with
workforce composition in terms of both the firm-specific relative amount of workers
of a certain type (sorting) and workers having the same efficiency in conducting that
job task content (segregation). In this sense, workers in the same task are “highly
rival factors” (Hicks 1932) since they can be freely substituted for one another, and
this possibility ensures that high-wage workers do sort in high-wage firms and indus-
tries, and also that more efficient people would be preferred to get a job in high-wage

workplaces than ones who are less productive”."!

g

I To build intuition, such idea can be formalized using an Horvath (2000)’s aggregator: the aggregate type-a
workforce of industry-s can be taught as a CES aggregator of firm-specific labour measures of eq. (7),

l(a,s) = [/h (Eh(a,s))ﬁdh} v

since each worker-i is endowed with E};(a,s) = 1 unit inelastically supplied. Here, as 1) — co, type-a workers
become perfect substitutes; conversely, for any given value of parameter ¢ comprised in [0, oo) workers won’t
be freely substituted across firms in the same industry. As a natural consequence, each worker would work
in the firm (h,s) paying the highest wage according to its pfl(a, s). More, at the intensive margin, firms in the
same industry would pay the same wage level.

This is a crucial aspect to consider when moving from firm to industry dimension: free labour mobility
within an industry — materialized when i = co — allows to impose firms’ optimal wages to be even, so to have
a unique industry-s wage in equilibrium; refer to Proposition 1 and Remark %

1+y

4y T+
Analogously, worker-a wage can be seen as w(a,s) = [fh (wh(a,s)> ! dh] with ¢ = oco.
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(Firm optimization) Given y;(s) being the production function in eq. (9), and the
firm’s conditional demand given by eq. (8), the problem of a monopolistically compet-
itive firm (h,s) choosing capital and labour endowments is

max Pr(s)yn(s) — (Z R(j) kn(j,s) + ) wn(a,s) Eh(ar5)>
] a

P () Akn(j:5) boj A €n(a8) ya

st wils) = (2 yte

with a = {rt,nrt} and j = {phy,ict}. The inter-temporal Lagrangian function for
firm-h industry-s takes the form of

L = 5 s) — ( R(phy) k;,(phy,s) + R(ict) kj,(ict,s) +
ot S vy, = P = (RO ki(phy, ) + Rict) it 3
+ wy,(rt,s) by (rt, s) + wy(nrt, s) Eh(nrt,s)> +
— ¢ [yn(5)pn(s)° — ()]

with ' being the penalty multiplier. Optimality conditions are in order

oL _1 -
(e ¥ &P
oL
W : ph(s)fkh(phy,s) = MR(phy)
oL

skt sy | Pr)ftias) = MR(ict)

with the price mark-up being

and first order conditions of firm-industry specific output relative to capital-types
are

s = (k) o) (katps)) ]

1-a—g G

fotins = (1= = A | (kalph, ) V0 0497 | (katiet )
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with

P=1a}

Vi) = (Gart9)) "+ (1= 1) Qi (s)
and

Q (s) = /\(kh(ict,s))g +(1-7) (éh(nrt,s))g

Note how aggregate capital rental rates, R; (j), are obtained by aggregating marginal
product of capital types ( fx, (]-,S)) across firms and industries.

Optimality conditions for wages are found by deriving directly for (y(a,s); this
results in computing what follows.

oL
ARG Pi(s)fo,(rts) = Mwn(rt, s)

oL
W ' ph(s)fﬂh(nrtﬁ) = Muwy,(nrt,s)

with the price mark-up still being M = %5, and first order conditions of firm

(h,s)’s output relative to labour-types are

1-—a—g

fue) = (1= w)y(kh(phy,s))“yh (s) < (@(rt,s))g_l

1-a—g [ o—1

Foytunts) = (1= )1 = ) (1 =) (K (phy,5)) Vi (5) € Q4 ()T (u(nrts))

with

l=1ia}

Vi) = (Ga(rt,9)) "+ (1= 1) Qi (5)
and

9y (s) = /\(kh(ict,s))g +(1-7A) (Eh(nrt,s))q

Now, note that labour supplies for both types of tasks a = {rt,nrt} are all deter-
mined by eq. (7), namely (;,(a,s) = f(wh(a,s), By(a,s), Wy(a,S), BH(a,S)> . There-
fore, equating demand and supply of labour for each task-a results in deriving the
associated optimal wage level in general equilibrium, that is

ph(s)fﬁh(rt,s) = Muwy(rt,s)

Uy(rt,s) = ( wy(rt,s) By (t, s) ))g

Yo s wn(rt,s)By(rt,s
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and

ph(s)féh(nrt,s) =M wh(nrt,s)

B wy (nrt,s)By(nrt, s) 6
Enlnrts) = (2}1,5 wy,(nrt,s) By, (nrt, s)

By writing down the extensive forms for each derivative of ¢;,(a,s) and exploiting
the calculations to solve for wy(a,s), together with proposition 1, optimal wages are
those reported in eq. (10). Note that V) (s) expresses the substitutability between
routine workers ({,(rt,s)) and the ICT composite good, while Q) (s) identifies the
substitutability between ICT capital (ky(ict,s)) and non-routine workers ({)(nrt,s)),
considering each firm-h € ‘H in industry-s.

Finally, firm (h,s) profits can be found by including equilibrium optimality condi-
tions for both capital and wages in

Dy (s) = pu(s) (ZR Vkn(j,s) +thas€h(as)>

where j = {phy, ict} identifies the types of capital in the economy.

(Proof of Proposition 1) This heuristic proof is centred around the definition of
the workers’ measures as given by eq. (7) with no worker-a benefit, By, (a,s) = 1, Va, h, s.
Imagine an economy in which there is only one industry-h € S = 1 populated by two
firms, {h,h'} € H, and define Wy (a,s) = wy(a,s) + wy(a,s). Then:

(@) when firms are assumed to be homogeneous in their size, i.e., when (y(a,s) =
l(a,s), then they should set the same optimal wage level since

(o =) e =) (= 565)

holds only if wy(a,s) = wy(a,s).

(b) if firms are heterogeneous in size eq. (7) predicts how, in order to have ¢;(a,s) #
l(a,s), it is necessary that wage levels are different, wy(a,s) # wy(a,s). As-
sume that firm (W', s) sets a wage rate higher than firm (h,s), so that the former
is larger than the latter. Assume further an increase in the wage chosen by firm
(H,s), labelling the new level as wy (a,s), while the other wage remains un-
changed. Henceforth, it must be the case that

wy(a,s) = wy(a,s)’, sothat Wyl(a,s) < Wyla,s)'.
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For such firm, clearing the condition

/

W’H(a S)/ _ ZUh/(a,S)

= s (B.1)

9l (a,s)
owy, (a,s) >0, so

that l(a,s) > fly(a,s). Different scenario happens to the employees level of
firm (h,s): it turns out that 0, (a,s)’ < l,(a,s) when wy(a,s) — wy(a,s) since

means that there should be a related increase in its workforce,

aazfl’z/(?;g) < 0. The implied mechanism is just
aﬁh/(a,s) _ aﬂh(a,s)
owy (a,s)  Owy(a,s)

However, the given change in the wage of firm (h',s) not only has an impact on
l(a,s), but it indirectly translates to the wage level of firm (h, s) due its negative
effect on ¢;,(a,s). The firm (h,s) version of the condition in eq. (B.1)

(B.2)

implies that, after an increase in Wy (a,s) and a decrease in {(a,s) due to a
positive change in wy (a,s), then the wage level of firm (h,s) must increase as
well. It turns out that an increase in the wage level of firm (I', s) must determine
an equal increase in the right-hand-side of both eqs. (B.1)-(B.2), which means

wy(a,s)  wy(a,s)

ly(a,s)  Lly(a,s)

owy,(a,s) _ owy(a,s)
so that olp(as) — oly(as)”

To sum up, when firms in a specific industry are of different size in terms of

employed workers of type-a, an increase in the wage level of a given firm causes:

(i) an increase in the number of employed people in that firm, gj}”—% > 0; (i)
w4,

oy (a,s)

dwy (a,s) <0, and

a related decrease in the number of workers of the other firms,

owy,(a,s)
owy, (a,s)
workers of each type-a are free to move across firms in the same industry at no

cost and firms can hire new workers from the other firms;

thus an increase in other firms’ wage levels, > 0. This is true as long as

(c) by applying the same reasoning of point (b), if workers were perfectly mobile
!
across industries, then it would have been the case that Zg((;ss ,)) = Zg((:ss )) This

chance is ruled out by assuming a very high cost of transition from one industry

to another such that no one among workers is keen to move.

O
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(Equilibrium characterization) In equilibrium, the model should specify the clear-
ing conditions of labour, capital, and goods markets. Starting from the labour mar-
ket, since each household inelastically supplies one unit of labour, then it must hold
that the total number of workers of type-a in firm (h,s) is {,(a,s) = fol 0t (a,s)di, so
that the total labour supply is L5 = ¥, Y, Y ,(a,s). The measure of type-a worker
in firm (h,s) is given by eq. (7). Aggregating it across tasks and firms results in
obtaining the industry-specific labour supply, L(s) = Y, /n(a,s). Analogously, ag-
gregate labour supply of task-a is found by aggregating across firms and industries,
L(a) = Y, sfn(a,s). It follows that, considering a = {rt, nrt}, aggregate labour de-
mand for this economy is just LP = Y, L(a) = L(rt) + L(nrt). Labour market clearing
requires that LP = LS.

For what concerns equilibrium in the capital market(s), total physical and ICT
capital demands from industries are, respectively, KP(phy,s) = Y, k,(phy,s) and
KP(ict,s) = ¥y, kp(ict, s), so that aggregate demands are simply determined: KP (phy) =
Y KP(phy,s) and KP (ict) = ¥, KP(ict,s). By the part of supply, aggregating capital
quantities over households would results in aggregate physical and ICT capital sup-
plies: K®(phy) = [.k'(phy)di and K°(ict) = [ k'(ict)di. Equilibrium in both markets
requires K(phy) = KP (phy) = K°(phy) and K(ict) = KP (ict) = K°(ict), while market
clearing in the capital market implies KP (phy) + KP (ict) = K°(phy) + K5 (ict).

Finally, aggregate profits to be given to households are DP = fl D; di, while D5 =
Y D(s) are the total profits computed by aggregating industry-specific profits, D(s) =
Y, Dy(s). Equilibrium requires D = DP = DS. This implies that, by aggregating the
households’ inter-temporal budget constraints and imposing the clearing conditions
so far, including also total quantities for

¢ = /iCidi
1) = [F()di, i
b= /ibidz'

o~ LE ey
¢~ FLT800

where B = 1 since it is the sum of relative quantities, the aggregate resource con-
straint for this economy at time t reads as

Ct + It(phy) + It(ict) + bt_|_1 — (1 + T’t)bt = wiBiL; + R <Kt(phy) + Kt(iCt)) + Dy

which equals the total output as defined by the final output CES aggregator, Y.

Equilibrium conditions are described in Section 2.
O
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C. MODEL ESTIMATION AND SIMULATION

(Estimating equations) 7o derive the equations to estimate the elasticity of substi-
tution between ICT capital and non-routine workers (p), and the elasticity of substitu-
tion between routine workers and ICT composite good (0), i.e., that shown in eqs. (12)
and (13), I apply the procedure implemented by Karabarbounis and Neiman (2014).
The main steps to be implemented are:!

1. Define a CES production function, y (-) and compute the related F.O.C.s.; then,
equate them to the aggregated (across firms and industries) F.O.C.s of the mo-
nopolistically competitive firms;

2. Define the following income shares. For a given labour force (¢), a given capital
stock (k), and given profits (D),

() ) e o) (o) - v

3. By combining the F.O.C. for capital (either for labour) with all the above shares,
one gets an equation whose left-hand side is 1 — syM. Then, this should be

written in changes between two arbitrary periods, whose resulting elements are
labelled as x;

4. Use eq. (6) to substitute R;

— use the Euler condition (from the households side) expressed in deviation
between two arbitrary periods get (1+7r) = % so that, under constant p and

8, it holds that R = (;

5. Once substituting out R, take a linear approximation of the resulting equation
around { = 0, thus obtaining the estimating equation.

Apply this procedure for whatever CES functional form of the production function
y (+). Note that, to carry out this procedure in the framework I propose it is necessary
to assume equal marginal product of each type of capital. In fact, in eq. (6), trends in
both capital rental rates are tied with trends in the quantity of ICT capital relative
to non-ICT one, after aggregating optimal conditions in the firm problem. Here, the
two capital rates are given by capitals’ marginal productivity: thus, to have a unique
capital rental rate, such that R(phy) = R(ict) = R, equal marginal product of capital
types are in order.

(Targeting moments for MSM) Start from the weighting parameters, A and .
For each industry-h € S, the weight of ICT capital (A) in the ICT composite is matched
with the industry-specific ICT capital in the aggregate stock in the data.

I Please refer to Karabarbounis and Neiman (2014) for further details and discussion.
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Differently, the weight of routine workers (u) in the production function is used
to bridge the share of routine workers in the data with that predicted by the model,

i.e., I implement the following identity using eq. (7): lyo40(a,s) = (% g((;’?)y ~
Liata(a,s). Of course, since the model’s measures of employment are determined by
relative wages, some slight differences in the estimated matched moments are in order.

Finally, I consider productivity dispersion parameter, 0, which directly relates to
the between-industry wage difference for worker-a. Given a = rt, I use the wage pre-
mium of type-a working in top industry (s) relative to its counterpart in the bottom

industry (s'):

w(s) 1—a
{A(s)x(rt,s) (k(phy,s)) V(s) <6 B(rt,s)?6E) =D W (rt,8)0(1-¢())

a(s) 1-a(s)=¢(s")
[A(S’)x(rf,S’) (k) vy o

If considering changes over time, only k(phy,-), V (), B(-), and WB(-) are time-
varying, with all the other parameters previously calibrated, targeted and fixed: this
leaves 0 as the only free parameter to match this moment. Note how I choose to pin
down labour market concentration for routine workers in accordance with Figure 4.

TABLE C.1: EMPLOYMENT MEASURES AND TASKS’ RELATIVE WAGES

log(¢(rt,s)) log (¢(nrt,s))
v @ (3) (1) (2) 3)
Urt,s|wB) | 765* .657* 355
(32) (28) (.17)
l(nrt,s | wB) 5.76%**  3.71%*  29.4**
(19) (11) (22)
Industry FE v v X v v X
Time FE X 4 X X 4 X

Significance level at * (p<0.05), ** (p<0.01), *** (p<0.001). Standard error in parentheses.
Analysis at 3-digit U.S. 2017 NAICS industries in 2003-2022 on N = 1240 observations. All the
regressions are of the form (yt | Xit, Zj,t) = Bc + BiXit + ;2 + ut, with X; being the regressors,
and Z; a set of controls. All series are in logs. Constant not reported to save space. Source: BLS
and own calculations.
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TABLE C.2: METHOD OF SIMULATED MOMENTS

fit
parameter value moment to match data model
Upor | Weight of routines in y(bot)  0.6763 routine share, bottom .0858 .0434
Umia | Weight of routines in y(mid) 0.4953 routine share, middle 1357 .0458
Hiop | weight of routines in y(top)  0.3366 routine share, top 0985  .0199
Apor | weight of ICT in Q(bot) 0.4565 ICT share, bottom 3968 3968
Amia | weight of ICT in Q(mid) 0.4645 ICT share, middle 3042 3042
Atop | weight of ICT in Q(top) 0.4514 ICT share, top 2990 .2990
6 | productivity dispersion 11.302 wage premium, w (a, [s,s']) .9945 9945
Estimated values and related matched moment using the Methods of Simulated Moments by Mc Fadden (1989).
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FIGURE C.1: CORRELATION BETWEEN ELASTICITIES AND RELATIVE ICT

Note: these scatterplots compute the correlation of trends in labour share with trends in the stock of ICT capital relative to
physical capital, namely the left- and right-hand sides estimated through the elasticities of substitution as in egs. (12) and
(13), respectively. Each y-axis report the labour share, while common x-axis is referred to ICT capital. Panel C.1a refers the
correlation of the elasticity of substitution between ICT capital and non routine workers, while Panel C.1b plots that of the
entire labour share (considering both routine and non routine workers). Solid-gold negatively-sloped line is the estimated
linear trend from robust regression. Labels to each point refer to the 3-digit U.S. 2017 NAICS code of the related industry.

Source: BEA, BLS and own calculations.
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FIGURE C.2: CORRELATION BETWEEN IN-TIME ELASTICITIES AND RELATIVE ICT

Note: these scatterplots compute the correlation of trends in labour share with trends in the stock of ICT capital relative
to physical capital, namely the left- and right-hand sides estimated through the elasticities of substitution as in eqs. (12)
and (13), respectively; first row displays correlation in the period 2003-2012, while the second row that in the period 2013-
2022. Each y-axis report the labour share, while common x-axis is referred to ICT capital. Panels C.2a and C.2c refer the
correlation of the elasticity of substitution between ICT capital and non routine workers, while Panels C.2b and C.2d plot
that of the entire labour share (considering both routine and non routine workers). Solid-gold negatively-sloped line is the
estimated linear trend from robust regression. Labels to each point refer to the 3-digit U.S. 2017 NAICS code of the related
industry. Source: BEA, BLS and own calculations.
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TABLE C.3: MODEL FIT, UNTARGETED MOMENTS

fit

moment data model
aggregate task-premium .001 .005
aggregate wage -.008 -.073
routine wage, bottom -.016 -.070
routine wage, middle -.001 -.051
routine wage, top -.007 -.079
non-routine wage, bottom -.019 -.060
non-routine wage, middle .003 -.074
non-routine wage, top -.010 -.046

Untargeted moments to match to validate the calibration strategy. All mo-
ments, referred to real log-wages, are taken as percentage changes through-
out the series.
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(Market concentration) 7o evaluate the pattern in concentration at industry level,
the standard measure Herfindahl-Hirschman Index (HHI) is computed to account for
market concentration of labour force for industries. To compute the dynamics in each
year, labour market-level concentration for task-a is defined as

2
HHIy,) =), (%) (C.D

5g

where the sum is over individual industries (s), or over a group of industries (s g).
Analogously, total employment concentration is defined by HHI, = Y, HH Ly(a).- This
measure is included in the range [0,1]: a value of 1 identifies maximum market con-
centration, namely a single monopsonist in the labour market,; conversely, a value of 0
results in a perfectly competitive environment. By definition, if industries have equal
labour force size, the index would converge to the number of industries. An index
below 0.15 points for an un-concentrated labour market, an index between 0.15 and
0.25 indicates a moderate concentration, while a value higher than 0.25 results in an
highly concentrated labour market.

Each subplot of Figure C.3 depicts the evolution in HHI score for both routine
and non-routine workers. As a general observation, labour market concentration for
both tasks has increased for top and bottom groups, but it has decreased for middle.
With respect to bottom group, Panel C.3a indicates a joint increase in market con-
centration for both job tasks, with a very high concentration for non-routine workers
(HH Ig(m) > 0.25); routine workers are approaching to a moderate concentration.

In relation to middle group, after a steady increase, labour market concentration
for non-routine workers constantly drops, even if concentration is still high since
HHIyp) > 0.25. The score for routine workers is low, but if follows cyclical fluc-
tuations, with a steady increase before a recession, and thereafter a substantial drop.

Finally, top group has seen a marked and steady increased in market concentra-
tion for non-routine workers, which is approaching to a moderate concentration; for
the part of routine workers, concentration is high and, after a steady rise in the early
years, then a flat pattern has occurred.
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FIGURE C.3: LABOUR MARKET CONCENTRATION BY GROUPS OF INDUSTRIES

Note: the figure represents the evolution in labour market concentration as measured by the Herfindahl-Hirschman Index
(HHI). Each subplot measures the dynamics in each broadly defined group of industries by routine (red line, left axis) and
non-routine (green line, right axis) tasks. Source: BLS and own calculations.
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TABLE C.4: SUMMARY OF CALIBRATION, 2003-2012

value

parameter bottom middle top global source
% physical capital, share of y(s) 0.131 0.091 0.254 data
€ demand elasticity across firms 6 external
U weight of routine workers in y(s) 0.196 0486 0.902 MSM
A ICT capital share in Q(s) 0.650  0.530 0.185 MSM
0 households’ productivities dispersion 7.26 MSM
0 EoS, ICT capital and non-routine 0.355 0.431  0.408 estimation
o EoS, routine and ICT composite 0.366 0429 0.367 estimation

Set of estimated parameters of the model, first-half of the sample. “data” implies that the values are directly computed
from data sources, while in “external” I choose standard calibrated values from the literature. “MSM” refers to the
Methods of Simulated Moments as in Mc Fadden (1989). “estimation” refers to previously estimated values under a
specific procedure; these values are taken from Table 8.

TABLE C.5: SUMMARY OF CALIBRATION, 2013-2022

value

parameter bottom middle top global source
« physical capital, share of y(s) 0.131 0.104  0.260 data
€ demand elasticity across firms 6 external
U weight of routine workers in y(s) 0.415 0.506  0.608 MSM
A ICT capital share in Q(s) 0.786 0.490 0.327 MSM
0 households’ productivities dispersion 7.79 MSM
o EoS, ICT capital and non-routine 0.819 0.345  0.508 estimation
o EoS, routine and ICT composite 0.326 0.438 0.357 estimation

Set of estimated parameters of the model, second-half of the sample. “data” implies that the values are directly computed
from data sources, while in “external” I choose standard calibrated values from the literature. “MSM” refers to the
Methods of Simulated Moments as in Mc Fadden (1989). “estimation” refers to previously estimated values under a

specific procedure; these values are taken from Table 8.
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TABLE C.6: METHOD OF SIMULATED MOMENTS, SUB-PERIODS

2003-2012 2013-2022

moment to match value data model value data model
Uyt routine share, bottom 0.196 0.087 0.097 0415 0.085 0.051
Umig routine share, middle 0486 0.132 0.057 0.506 0.140 0.030
Htop ToOUtine share, top 0902 0.100 0.013 0.608 0.097 0.083
Apot  ICT share, bottom 0.650 0.399 0.399 0.786 0.395 0.395
Amia ICT share, middle 0.530 0.314 0.314 0.490 0.295 0.295
Atop  ICT share, top 0.185 0.287 0.287 0.327 0.311 0.311

6 wage premium, w (4, [s,s']) 7.259 0.994 0.994 7.787 0995 0.995

Estimated values and related matched moment using the Methods of Simulated Moments by Mc Fadden (1989) for first
and second half of the sample.

TABLE C.7: VARIATIONS IN THE SERIES AND STRUCTURAL HETEROGENEITY

model | AP (x)
data model Al(rt) Al(nrt) A(C) Ak(ict) A (L ict) (all)s,

WAGES, VARIANCE

routine 2285  2.289 2.55 242 224 2.78 2.45 2.75
non-routine 2314 2311 2.78 244 2.37 2.78 2.39 2.83
industry 2299  2.300 2.66 2.43 2.30 2.78 242 2.79

Changes in variances in real log-wages in the model induced by variations in one or more series, keeping fixed the others, and
imposing the parameters to be that in the baseline calibration (i.e., quantification of Model D under industry-specific parameters).
A ({) refers to joint variations in routine and non-routine series, while A ({,ict) is associated to simultaneous changes in both ICT
capital and both types of workers. (all)q, keeps fixed all the series (physical capital included), at their initial level, Ty = 2003. In all
the columns, the variation is computed throughout the period-by-period percentage differential thus identifying overall changes in
empirical trends implied both by the data and the model; same values differ in terms of decimals.
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(Further results of Subsection 4.2) As in the main text, below I have performed
an opposite exercise of Table 9 where the main structural parameters in the model,
namely (0s,0s,0)yc (bot,mid top} AT keeping fixed one or more at time, and let to change
the non-ICT capital share and the weighting parameters in the production function,
respectively (s, pis, As)ysc (bot,mid top}s the output of such exercise is shown in Table C.8.

The two analysis performed are conducted by considering industries as a whole,
that is, keeping the total employment in terms of both routine and non-routine work-
ers, in order to address the determinants of between-industry wage inequality. How-
ever, as noticed, these two exercises can be performed also by distinguish the effects
of changing parameters on separate job tasks: Table C.9 reports the two for routine
workers, while Table C.10 the same but for non-routine workers.

Below it is possible to find a detailed comment for each employment group and, fur-
ther below, a comparative comment that shows how the patterns holding for industry
with aggregate employment hold also for routine and non-routine workers separately.
Visually, these results are in Figures C.4a and C.5a for aggregate industries, and in
Figures C.4b and C.5b by job task categories.

TABLE C.8: MODEL COUNTERFACTUAL, FIXING

A model | A m<<I>(X, ), 0 = {pn, —pxu } )

industry wages  var(w)-, level share, model share, data

DATA 1.18

MODEL 1.09
A®,, 94 86 79
A®\P 2.21 2.04 1.87
A®\(U,p) 1.31 1.21 1.11
A@‘g 1.04 .96 .88
A®|(y ) 130 1.20 1.10

Quantification of Model B. Model implied between-industry real log-wage variance changes between two time spans dif-
ferently calibrated, and changes also according to variations in some parameters; values are referred to variance levels
considering bottom, middle, and top industries. Column 2 shows the level in the second period of the between-industry
variance both in the data and in the period-two fully calibrated model. For the model specified in column 1: column
3 represents the variance level in the second period as implied by the change in the parameter(s), while column 4 com-
putes the second period variance share of the period-two full model which is accounted by fixing a specified parameter,
n| () [0(pm) 00— 1)

, where ®(x, ) identifies the series in the second period, and © the set of parameters where some
m [@(m) | e(p,m]

of them, (p, 12), are taken in the second period, while (—p, 11) reflects the set of all the parameters in the first period but
those considered in the second period. Column 5 reports the fraction of variance explained by changes in parameter(s) in
the observed data-driven variance.
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TABLE C.9: MODEL COUNTERFACTUALS FOR ROUTINE WORKERS

A model | A m(CD(x, 7),0 = {py, —Pﬁ}>

routine wages var(w), level share, model share, data
CHANGE
DATA 1.14
MODEL .95
Ao .99 1.04 .87
Ap .35 .37 .30
Ao, p) .66 .70 .58
AG .57 .60 .50
A(o,p,0) 71 76 63
FIXING
DATA 1.14
MODEL .95
A®|, 71 .75 .62
AQ, 1.15 1.22 1.01
AO)(4p) .84 .89 74
AOg .90 .95 .79
A®| (s p0) 81 86 71

Quantification of Model A and Model B. Model implied industry-level between-routine workers real log-wage variance
changes between two time spans differently calibrated, and changes also according to variations in some parameters;
values are referred to variance levels considering bottom, middle, and top industries. Column 2 shows the level in the
second period of the between-industry variance both in the data and in the period-two fully calibrated model. For the
model specified in column 1: column 3 represents the variance level in the second period as implied by the change in the
parameter(s), while column 4 computes the second period variance share of the period-two full model which is accounted
m [@(m) | @(n,m@(—p,m]
nlown) [0(pmn)]
and O the set of parameters where some of them, (p, T2), are taken in the second period, while (—p, 1) reflects the set of
all the parameters in the first period but those considered in the second period. Column 5 reports the fraction of variance
explained by changes in parameter(s) in the observed data-driven variance.

, where ®(x,Ty) identifies the series in the second period,

by the change in a specified parameter,
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TABLE C.10: MODEL COUNTERFACTUALS FOR NON-ROUTINE WORKERS

A model | A m(@(x, 7),0 = {py, —PT1}>

non-routine wages  var(w)s, level share, model share, data
CHANGE
DATA 1.21
MODEL 1.22
Ao 3.74 3.06 3.09
Ap 1.41 1.15 1.16
Ao, p) 1.57 1.28 1.30
AO 211 1.73 1.75
A(a, p,0) 1.61 1.31 1.33
FIXING
DATA 1.21
MODEL 1.22
A®|, 1.16 95 .96
A®|p 3.27 2.67 2.70
AG)I((T,p) 1.78 1.45 1.47
A®y 1.18 97 98
A®|(y ) 1.79 1.46 148

Quantification of Model A and Model B. Model implied industry-level between-non-routine workers real log-wage variance
changes between two time spans differently calibrated, and changes also according to variations in some parameters; values
are referred to variance levels considering bottom, middle, and top industries. Column 2 shows the level in the second period of
the between-industry variance both in the data and in the period-two fully calibrated model. For the model specified in column
1: column 3 represents the variance level in the second period as implied by the change in the parameter(s), while column 4 com-
putes the second period variance share of the period-two full model which is accounted by the change in a specified parameter,

nlow) [0 o-pm)

, where ®(x, ;) identifies the series in the second period, and © the set of parameters where some of them,

m [@(x,‘rz) | @(p,'rz)]
(p, @), are taken in the second period, while (—p, 71) reflects the set of all the parameters in the first period but those considered
in the second period. Column 5 reports the fraction of variance explained by changes in parameter(s) in the observed data-driven

variance.
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(Comparative comment) Investigations on the contribution of structural param-
eters outline an important feature of the U.S. wage structure: observed structural
differences among industries account for a sizeable fraction of wage inequality. All
the effects can be summarized as follows:

(a)

(b)

(c)

routines. Most of the share is accounted by trends in industry-heterogeneous
differentials in elasticities of substitution among capital and worker types (58%,
upper part of Table C.9), also taken in combination to different weights of fac-
tor inputs in production (79%, lower part of Table C.9). Considering these dif-
ferences across industries, the rise in labour market concentration in terms of
workers’ complementarities (sorting and segregation effects) is an amplifier of
U.S. wage inequality across routine job tasks in the last two decades, explaining

63% of the total between-industry routine real log-wage variance (upper part of
Table C.9);

non-routines. Most of the share is accounted by trends in industry-heterogeneous
differentials in elasticities of substitution among capital and worker types (130%,
upper part of Table C.10), also taken in combination to different weights of fac-
tor inputs in production (98%, lower part of Table C.10). Considering these dif-
ferences across industries, the rise in labour market concentration in terms of
workers’ complementarities (sorting and segregation effects) is an amplifier of
U.S. wage inequality across non-routine job tasks in the last two decades, ex-
plaining 133% of the total between-industry non-routine real log-wage variance
(upper part of Table C.10);

industries. Most of the share is accounted by trends in industry-heterogeneous
differentials in elasticities of substitution among capital and worker types (94%,
Table 9), also taken in combination to different weights of factor inputs in pro-
duction (88%, Table C.8). Considering these differences across industries, the
rise in labour market concentration in terms of workers’ complementarities (sort-
ing and segregation effects) is a amplifier of U.S. wage inequality across indus-
tries in the last two decades, explaining 98% of the total between-industry real
log-wage variance (Table 9).

Under a comparative perspective, routine workers wage inequality behaves similarly
from that of non-routine and industries. All these variances are mostly explained
by the substitution elasticity between routine and non-routine workers (o) only and,
Jjointly, the huge negative effect of o on wage inequality is reduced due to changes

in p.

On the role of 9, again a clear division does not emerge: real wage dispersion

increases after an increase in labour market concentration either for routine and non-
routine workers and for industries. Henceforth, stronger workers’ complementarities
through stronger sorting and segregation effects result in negatively impacting all the
considered categories, thus increasing real log-wage dispersion.
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FIGURE C.4: MODEL COUNTERFACTUAL, CHANGE

Note: these figures plot the second-period between-industry real log-wage variance, as a share of that in the data, implied
by the model when changing one or more parameters at time as shown in Table 9 and in the upper part of Tables C.9 and
C.10, for industry (total employment), routine and non-routine workers.
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FI1GURE C.5: MODEL COUNTERFACTUAL, FIXING

Note: these figures plot the second-period between-industry real log-wage variance, as a share of that in the data, implied by
the model when fixing one or more parameters at time as shown in Table C.8 and in the lower part of Tables C.9 and C.10,
for industry (total employment), routine and non-routine workers.
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(Comment for Skill-Biased Technological Change (SBTC) estimation) As
argued in the main text, Subsection 4.3, Skill-Biased Technological Change (SBTC)
theory implies that wage differentials are shaped by different adoption rate of technol-
0gy, so that dispersion in wages is mostly affected by how much an industry increases
its technological capital and this, in turn, will increase its demand for high-skill
or non-routine workers. Thus, below I have performed an exercise where the main
structural parameters in the model, namely (ps,0s,0)vsc (pot mid top}> @Nd the produc-
tion function weighting parameters, namely (as, ps, As)yqc (bot,mid top}> OT€ keeping fixed
at the first period, and let to change the series related to routine and non-routine
workers, and that of ICT capital, as described in the main text by Model C; the output
of such exercise is shown in Table C.11.

The analysis performed is conducted by considering industries as a whole, that is,
keeping the total employment in terms of both routine and non-routine workers, in
order to address the determinants of between-industry wage inequality. As noticed,
these two exercises can be performed also by distinguish the effects of changing pa-
rameters on separate job tasks; to this end, Table C.12 reports the SBTC analysis for
both routine and non-routine workers. The impact of SBTC seems to have major effect
on non-routine workers: in fact, while the variance explained by shifts in the series ex-
plain substantially less data-share compared to the case in which shifts in structural
parameters are also considered, the wage variance of non-routine workers explodes.
Therefore, as in the model, major impact of only the series is on non-routine workers.

TABLE C.11: MODEL COUNTERFACTUAL, SBTC

A model | A m((ID = {Xxg,, —Xq } ’ O(p, Tl))

industry wages  var(w)-, level share, model share, data

DATA 1.18

MODEL 1.09
AL(rt) 2.62 2.42 222
Al(nrt) 35 32 29
Al 1.32 1.22 1.12
Ak(ict) 1.99 1.84 1.69
A(L,ict) 1.34 1.23 1.13

Quantification of Model C. Model implied between-industry real log-wage variance changes between two time spans uni-
formly calibrated, with changes according to variations in some series; values are referred to variance levels considering
bottom, middle, and top industries. Column 2 shows the level in the second period of the between-industry variance both in
the data and in the period-two fully calibrated model. For the model specified in column 1: column 3 represents the variance
level in the second period as implied by the change in the parameter(s), while column 4 computes the second period variance
nlowa)e-xn) [0(pm)]
m[®(xm) |0(p0)]
O(x, 71) identifies the set of parameters in the first period, and ® the set of capital and labour series where some of them,

share of the period-two full model which is accounted by the change in a specified parameter, , where

(x,72), are taken in the second period, while (—x, 1)) reflects the set of all the series in the first period but those considered
in the second period. Column 5 reports the fraction of variance explained by changes in parameter(s) in the observed data-
driven variance.
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TABLE C.12: MODEL COUNTERFACTUAL, SBTC BY TASKS

A model | A m(q) = {xg, —xq} ‘ O(p, Tl))

wages var(w)o, level share, model share, data
ROUTINE

DATA 1.14

MODEL .95
AL(rt) 1.21 1.28 1.06
Al(nrt) 20 21 18
Y4 .56 .59 49
Ak(ict) 86 91 75
A(L,ict) 53 56 47

NON-ROUTINE

DATA 1.21

MODEL 1.22
AL(rt) 4.04 3.30 3.34
Al(nrt) .50 40 41
Al 2.09 1.70 1.73
Ak(ict) 3.13 2.56 2.59
A(L,ict) 2.14 1.75 1.77

Quantification of Model C for routine and non-routine workers separately. Model implied between-industry real log-
wage variance changes between two time spans uniformly calibrated, with changes according to variations in some
series; values are referred to variance levels considering bottom, middle, and top industries. Column 2 shows the level
in the second period of the between-industry variance both in the data and in the period-two fully calibrated model.
For the model specified in column 1: column 3 represents the variance level in the second period as implied by the
change in the parameter(s), while column 4 computes the second period variance share of the period-two full model
m [‘P(I,Tz)l‘b(*xﬁl) | ®(P,T1)]

n|@(xn) [0(pn)]
of parameters in the first period, and ® the set of capital and labour series where some of them, (x,T2), are taken in

which is accounted by the change in a specified parameter, , where ©(x, 1) identifies the set

the second period, while (—x, 11 ) reflects the set of all the series in the first period but those considered in the second
period. Column 5 reports the fraction of variance explained by changes in parameter(s) in the observed data-driven
variance.
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FIGURE C.6: MODEL COUNTERFACTUAL, SBTC

Note: these figures plot the second-period between-industry real log-wage variance, as a share of that in the data, implied
by the model when changing one or more parameters at time while keeping fixed the all the parameters, as shown in Tables
C.11 and C.12, for industry (total employment), routine and non-routine workers.

TABLE C.13: MODEL VS. DATA COUNTERFACTUAL, SERIES AND NEW PARAMETERS

model | A O(x)

A(tfp)

data Al(rt)  Al(nrt) AL Ak(ict) A({,ict) newly baseline
WAGES, VARIANCE
routine 2.285 .62 41 46 54 40 57 .34
non-routine 2.314 .07 .02 .02 .04 .03 .02 .09
industry 2.299 .35 22 24 .29 21 .30 22

Quantification of Model D. Changes in variances in real log-wages in the model induced by variations in one or more series,

keeping fixed the others, and imposing the newly estimated parameters to be homogeneous across industries. A ({) refers to joint

variations in routine and non-routine series, A (tech) is associated to simultaneous changes in both ICT capital and non-routine

workers, while changes in estimated industry-specific Hicks-neutral exogenous total factor productivity (TFP), given eq. (14), are

captured by A (tfp); TFP series are taken under the same (newly estimated) parameters’ values, or given the baseline calibration

(Table 3.2). In all the columns, the variation is computed throughout the period-by-period percentage differential thus identifying

overall changes in empirical trends implied both by the data and the model; same values differ in terms of decimals.
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FIGURE C.7: ESTIMATED PRODUCTIVITIES UNDER NEW PARAMETERS

Note: the figure shows the estimated Hicks-neutral exogenous total factor productivity (TFP) measures estimated from

the model.

Panel C.7a plots the series given a calibration where all the parameters are evenly set at the same newly

estimated values for all the industry-groups, while Panel C.7b shows the difference between such series and the estimated
TFP measures using the baseline calibration reported in Table 5. Series are scaled to be in the same range for graphical

comparison.
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FIGURE C.8: MODEL COUNTERFACTUAL, SERIES

Note: these figures plot the between-industry real log-wage variance, as a share of the data, implied by the model when
one or more series at time are changing, keeping fixed the parameters. Panel C.8a reports the result of Table C.7, where
structural parameters are heterogeneous across industries. By contrast, Panel C.8b reports the outcome from Table 10,
under industry-homogeneous structural parameters; note that a similar graph would appear if considering Table C.13.
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D. CASE UNDER MONOPSONY POWER

(Discussion) In this appendix I am going to replicate all the analysis in the main
text (calibration, estimation and counterfactuals from Model A and Model B) under
the case in which firms are assumed to be monopolistically competitive and take the
labour supply of each task-a as given. In this case, frictions due to a concentration in
the labour market suggest that wages’ formation is decided at firm level so that, taking
labour supplies and industry variables as given, the profit-maximization problem for
firm-h in industry-s becomes

max Dy (s $), 0 (a,s
RS oy L AQR R QANICR)

where firms have wage-setting power over employees. In other words, the profit
maximization implies that the Cobb Douglas-nested CES production function in eq.
(9) is subject to the labour supply curves specified by eq. (7), and to the conditional
firm demand in eq. (8), thus exploiting both monopolistic and monopsonistic power,
respectively, in combination. Whether one decides to assume or not a monopsony
power by the part of firms (i.e., maximizing taking (;(a,s) as a constraint) does not
change substantially the results and the conclusion of the main text. In fact, the only
difference between optimal wages for routine and non-routine workers for a monop-
olistically competitive firm only, as in eq. (10) and in Appendix B, and that of a
monopsonistic-monopolistically competitive firm is just the wage-markdown element
MO = % in both the composite parameters x(a,s), a feature of firms when consider-
ing also a monopsonistic environment.

Since 0, measuring the degree of sorting and segregation effects in the economy,
is the same for all industries, changes in variances due to changes in 0 have an even
effect in each industries, thus not changing the conclusion of the main text. This is
because, as already noticed, the specification of the households’ sorting choices com-
prises in itself the definition of monopsony power since the measure of workers of
type-a in firm-h, industry-s is mostly determined by relative wages as in eq. (7).
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TABLE D.1: SUMMARY OF CALIBRATION UNDER MONOPSONY

value

parameter bottom middle top global source
% physical capital, share of y(s) 0.263 0.195 0.514 data
€ demand elasticity across firms 6 external
U weight of routine workers in y(s) 0.676 0490 0.333 MSM
A ICT capital share in Q(s) 0.455 0.456  0.439 MSM
0 households’ productivities dispersion 114 MSM
0 EoS, ICT capital and non-routine 0.329 0.420 0.249 estimation
o EoS, routine and ICT composite 0.634 0.400 0.766 estimation

Set of estimated parameters of the model. “data” implies that the values are directly computed from data sources, while
in “external” I choose standard calibrated values from the literature. “MSM” refers to the Methods of Simulated Moments
as in Mc Fadden (1989). “estimation” refers to previously estimated values under a specific procedure; these values are
taken from Table 6.

TABLE D.2: METHOD OF SIMULATED MOMENTS UNDER MONOPSONY

fit

parameter value moment to match data model

Hpor | weight of routines in y(bot)  0.6760 routine share, bottom .0858  .1420
Umig | weight of routines in y(mid) 0.4902 routine share, middle 1357 1596
Hiop | weight of routines in y(top)  0.3331 routine share, top .0985 .0637
Apor | weight of ICT in Q(bot) 0.4552 ICT share, bottom 3968 3968
Aia | weight of ICT in Q(mid) 0.4585 ICT share, middle 3042 .3042
Atop | weight of ICT in Q(top) 0.4398 ICT share, top 2990 2990
6 | productivity dispersion 11.376 wage premium, w (4, [s,s']) 9945 9945

Estimated values and related matched moment using the Methods of Simulated Moments by Mc Fadden (1989).
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TABLE D.3: MODEL FIT UNDER MONOPSONY, UNTARGETED MOMENTS

fit

moment data model
aggregate task-premium .001 .005
aggregate wage -.008 -.073
routine wage, bottom -.016 -.070
routine wage, middle -.001 -.051
routine wage, top -.007 -.080
non-routine wage, bottom -.019 -.060
non-routine wage, middle .003 -.075
non-routine wage, top -.010 -.046

Untargeted moments to match to validate the calibration strategy. All mo-
ments, referred to real log-wages, are taken as percentage changes through-
out the series.

TABLE D.4: METHOD OF SIMULATED MOMENTS UNDER MONOPSONY, SUB-PERIODS

2003-2012 2013-2022

moment to match value data model value data model
Upot routine share, bottom 0.225 0.087 0.103 0415 0.085 0.051
Umig routine share, middle 0492 0.132 0.061 0.506 0.140 0.030
Htop routine share, top 0906 0.100 0.013 0.608 0.097 0.083
Apot  ICT share, bottom 0.647 0.399 0.399 0.786 0.395 0.395
Amia ICT share, middle 0.518 0.314 0.314 0.490 0.295 0.295
Atop ICT share, top 0.170 0.287 0.287 0.326 0311 0.311

6 wage premium, w (4, [s,s']) 7.255 0.994 0.994 7.787 0.995 0.995
Estimated values and related matched moment using the Methods of Simulated Moments by Mc Fadden (1989).
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TABLE D.5: SUMMARY OF CALIBRATION UNDER MONOPSONY, 2003-2012

value

parameter bottom middle top global source
% physical capital, share of y(s) 0.131 0.091 0.254 data
€ demand elasticity across firms 6 external
U weight of routine workers in y(s) 0.225 0.492  0.906 MSM
A ICT capital share in Q(s) 0.647 0518 0.170 MSM
0 households’ productivities dispersion 7.26 MSM
0 EoS, ICT capital and non-routine 0.355 0.431  0.408 estimation
o EoS, routine and ICT composite 0.366 0429 0.367 estimation

Set of estimated parameters of the model, first-half of the sample. “data” implies that the values are directly computed
from data sources, while in “external” I choose standard calibrated values from the literature. “MSM” refers to the
Methods of Simulated Moments as in Mc Fadden (1989). “estimation” refers to previously estimated values under a
specific procedure; these values are taken from Table 8.

TABLE D.6: SUMMARY OF CALIBRATION UNDER MONOPSONY, 2013-2022

value

parameter bottom middle top global source
« physical capital, share of y(s) 0.131 0.104  0.260 data
€ demand elasticity across firms 6 external
U weight of routine workers in y(s) 0415  0.506  0.608 MSM
A ICT capital share in Q(s) 0.786 0.490 0.326 MSM
0 households’ productivities dispersion 7.79 MSM
0 EoS, ICT capital and non-routine 0.819 0.345 0.508 estimation
o EoS, routine and ICT composite 0.326 0.438  0.357 estimation

Set of estimated parameters of the model, second-half of the sample. “data” implies that the values are directly computed
from data sources, while in “external” I choose standard calibrated values from the literature. “MSM” refers to the
Methods of Simulated Moments as in Mc Fadden (1989). “estimation” refers to previously estimated values under a
specific procedure; these values are taken from Table 8.
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TABLE D.7: MODEL COUNTERFACTUALS, MONOPSONY

A model | A m(CD(x, 7),0 = {px, —PT1}>

industry wages  var(w)s, level share, model share, data
CHANGE
DATA 1.18
MODEL 1.08
Ao 2.36 2.19 1.99
Ap .88 .82 .75
Ao, p) 1.12 1.03 94
A0 1.34 1.24 1.13
A(,p,0) 1.16 1.07 98
FIXING
DaATA 1.18
MODEL 1.08
AO|, .94 .87 .79
A®, 2.21 2.04 1.87
AO(40) 1.31 1.21 1.11
AOg 1.04 96 .88
A®|(s.p0) 1.30 1.20 1.10

Quantification of Model A and Model B given both monopsonistic and monopolistic power by the part of firms. Model
implied between-industry real log-wage variance changes between two time spans differently calibrated, and changes also
according to variations in some parameters; values are referred to variance levels considering bottom, middle, and top
industries. Column 2 shows the level in the second period of the between-industry variance both in the data and in the
period-two fully calibrated model. For the model specified in column 1: column 3 represents the variance level in the second
period as implied by the change in the parameter(s), while column 4 computes the second period variance share of the

n|own) [0(pm)00-pm)| . where 9(x,1)

period-two full model which is accounted by the change in a specified parameter,
m [o(m) | @(p,Tz)]

identifies the series in the second period, and © the set of parameters where some of them, (p, 72), are taken in the second
period, while (—p, 1) reflects the set of all the parameters in the first period but those considered in the second period.
Column 5 reports the fraction of variance explained by changes in parameter(s) in the observed data-driven variance.
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TABLE D.8: MODEL COUNTERFACTUALS FOR ROUTINE WORKERS, MONOPSONY

A model | A M(CD(X, ), 0 = {pn, —Pn})

routine wages var(w), level share, model share, data
CHANGE
DATA 1.14
MODEL .94
Ao 97 1.03 .85
Ap 33 35 29
A(o, p) 64 68 57
A0 55 .59 49
A(a, p, ) 70 74 61
FIXING
DAaTA 1.14
MoODEL .94
A®|<7 71 .75 .62
A®,, 1.15 1.22 1.01
A®|(op) 84 89 73
A®, 89 95 78
I 81 86 71

Quantification of Model A and Model B given both monopsonistic and monopolistic power by the part of firms. Model
implied industry-level between-routine workers real log-wage variance changes between two time spans differently cali-
brated, and changes also according to variations in some parameters; values are referred to variance levels considering
bottom, middle, and top industries. Column 2 shows the level in the second period of the between-industry variance
both in the data and in the period-two fully calibrated model. For the model specified in column 1: column 3 repre-
sents the variance level in the second period as implied by the change in the parameter(s), while column 4 computes the
second period variance share of the period-two full model which is accounted by the change in a specified parameter,

m|@(x,1) | O(p12),O(~p11)
[ | ], where ®(x, 1y) identifies the series in the second period, and © the set of parameters where some

m [@(m) | @(pm]
of them, (p, 1a), are taken in the second period, while (—p, 11) reflects the set of all the parameters in the first period but
those considered in the second period. Column 5 reports the fraction of variance explained by changes in parameter(s) in
the observed data-driven variance.
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TABLE D.9: MODEL COUNTERFACTUALS FOR NON-ROUTINE WORKERS, MONOPSONY

A model | A m(q)(x, 7),0 = {py, —PT1}>

non-routine wages  var(w)s, level share, model share, data
CHANGE
DATA 1.21
MODEL 1.22
Ao 3.76 3.08 3.10
Ap 1.44 1.18 1.19
A(c,p) 1.59 1.30 1.31
AO 2.12 1.74 1.75
A(c, p,0) 1.63 1.33 1.34
FIXING
DATA 1.21
MODEL 1.22
A®|a 1.17 .96 97
A®,, 3.27 2.68 2.70
A®|(y ) 178 146 147
A®|9 1.18 .97 97
A®| (50 1.79 147 148

Quantification of Model A and Model B given both monopsonistic and monopolistic power by the part of firms. Model implied
industry-level between-non-routine workers real log-wage variance changes between two time spans differently calibrated, and
changes also according to variations in some parameters; values are referred to variance levels considering bottom, middle, and
top industries. Column 2 shows the level in the second period of the between-industry variance both in the data and in the
period-two fully calibrated model. For the model specified in column 1: column 3 represents the variance level in the second
period as implied by the change in the parameter(s), while column 4 computes the second period variance share of the period-two
nlown) [0 00-pm)|

full model which is accounted by the change in a specified parameter, , where ®(x, Ty) identifies the series

nlowe) (oo
in the second period, and © the set of parameters where some of them, (p, T2), are taken in the second period, while (—p, 1)
reflects the set of all the parameters in the first period but those considered in the second period. Column 5 reports the fraction of
variance explained by changes in parameter(s) in the observed data-driven variance.
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